Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023455172> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2023455172 endingPage "280" @default.
- W2023455172 startingPage "253" @default.
- W2023455172 abstract "The standard approach to analyzing the results of probabilistic simulation rests on the use of classical statistics. In this paper, we explore the use of Bayesian statistics as an alternative. This makes it possible to incorporate prior information into the analysis of simulation results in a formal and rigorous manner, through the use of prior distributions. The Bayesian approach will typically yield improved analyses, by better taking into account what is actually known and what is not known about the system to be simulated (assuming that the prior distributions themselves adequately represent this knowledge). We briefly review Bayesian methods for readers who are not familiar with this type of analysis and suggest ways in which these methods can be applied to simulation. Specifically, we explore the use of Bayesian statistics for verification and validation of simulation models and for simulation output analysis, in both cases using priors on the performance measures of interest. We then study the use of prior distributions on the input parameters to the simulation, as a way to quantify the effects of input uncertainties on both the mean and the uncertainty of the performance measures of interest, and discuss Bayesian and related methods for choosing input distributions. Finally, we briefly consider the use of a joint prior on both the input parameters and the resulting performance measures. Bayesian methods are particularly appropriate for use in practice when simulations are costly, or when input uncertainties are large. Our work provides guidance on the use of Bayesian methods for simulation analysis. We hope that it will stimulate readers to learn more about this important subject, and also encourage further research in this area." @default.
- W2023455172 created "2016-06-24" @default.
- W2023455172 creator A5043474376 @default.
- W2023455172 creator A5050603775 @default.
- W2023455172 date "2000-09-01" @default.
- W2023455172 modified "2023-10-14" @default.
- W2023455172 title "Applying Bayesian ideas in simulation" @default.
- W2023455172 cites W2017105964 @default.
- W2023455172 cites W2026136470 @default.
- W2023455172 cites W2039420629 @default.
- W2023455172 cites W2072993076 @default.
- W2023455172 cites W2087018957 @default.
- W2023455172 cites W2090304678 @default.
- W2023455172 cites W2092444264 @default.
- W2023455172 cites W2108305342 @default.
- W2023455172 cites W2108353709 @default.
- W2023455172 cites W2120475208 @default.
- W2023455172 cites W244238446 @default.
- W2023455172 cites W4236065596 @default.
- W2023455172 cites W4237510031 @default.
- W2023455172 cites W4238020796 @default.
- W2023455172 cites W4239092430 @default.
- W2023455172 cites W4243795254 @default.
- W2023455172 cites W4245186283 @default.
- W2023455172 cites W4253097810 @default.
- W2023455172 cites W4292157289 @default.
- W2023455172 doi "https://doi.org/10.1016/s0928-4869(00)00025-2" @default.
- W2023455172 hasPublicationYear "2000" @default.
- W2023455172 type Work @default.
- W2023455172 sameAs 2023455172 @default.
- W2023455172 citedByCount "34" @default.
- W2023455172 countsByYear W20234551722012 @default.
- W2023455172 countsByYear W20234551722013 @default.
- W2023455172 countsByYear W20234551722014 @default.
- W2023455172 countsByYear W20234551722015 @default.
- W2023455172 countsByYear W20234551722016 @default.
- W2023455172 countsByYear W20234551722017 @default.
- W2023455172 countsByYear W20234551722018 @default.
- W2023455172 countsByYear W20234551722021 @default.
- W2023455172 countsByYear W20234551722023 @default.
- W2023455172 crossrefType "journal-article" @default.
- W2023455172 hasAuthorship W2023455172A5043474376 @default.
- W2023455172 hasAuthorship W2023455172A5050603775 @default.
- W2023455172 hasConcept C101112237 @default.
- W2023455172 hasConcept C105795698 @default.
- W2023455172 hasConcept C107673813 @default.
- W2023455172 hasConcept C119857082 @default.
- W2023455172 hasConcept C124101348 @default.
- W2023455172 hasConcept C149441793 @default.
- W2023455172 hasConcept C149569020 @default.
- W2023455172 hasConcept C154945302 @default.
- W2023455172 hasConcept C160234255 @default.
- W2023455172 hasConcept C177769412 @default.
- W2023455172 hasConcept C33923547 @default.
- W2023455172 hasConcept C41008148 @default.
- W2023455172 hasConcept C49937458 @default.
- W2023455172 hasConcept C71983512 @default.
- W2023455172 hasConceptScore W2023455172C101112237 @default.
- W2023455172 hasConceptScore W2023455172C105795698 @default.
- W2023455172 hasConceptScore W2023455172C107673813 @default.
- W2023455172 hasConceptScore W2023455172C119857082 @default.
- W2023455172 hasConceptScore W2023455172C124101348 @default.
- W2023455172 hasConceptScore W2023455172C149441793 @default.
- W2023455172 hasConceptScore W2023455172C149569020 @default.
- W2023455172 hasConceptScore W2023455172C154945302 @default.
- W2023455172 hasConceptScore W2023455172C160234255 @default.
- W2023455172 hasConceptScore W2023455172C177769412 @default.
- W2023455172 hasConceptScore W2023455172C33923547 @default.
- W2023455172 hasConceptScore W2023455172C41008148 @default.
- W2023455172 hasConceptScore W2023455172C49937458 @default.
- W2023455172 hasConceptScore W2023455172C71983512 @default.
- W2023455172 hasIssue "3-4" @default.
- W2023455172 hasLocation W20234551721 @default.
- W2023455172 hasOpenAccess W2023455172 @default.
- W2023455172 hasPrimaryLocation W20234551721 @default.
- W2023455172 hasRelatedWork W1998742657 @default.
- W2023455172 hasRelatedWork W2081420412 @default.
- W2023455172 hasRelatedWork W2154346606 @default.
- W2023455172 hasRelatedWork W2296213902 @default.
- W2023455172 hasRelatedWork W2394054250 @default.
- W2023455172 hasRelatedWork W3006221667 @default.
- W2023455172 hasRelatedWork W3214042144 @default.
- W2023455172 hasRelatedWork W4225603608 @default.
- W2023455172 hasRelatedWork W4235165088 @default.
- W2023455172 hasRelatedWork W4328114192 @default.
- W2023455172 hasVolume "8" @default.
- W2023455172 isParatext "false" @default.
- W2023455172 isRetracted "false" @default.
- W2023455172 magId "2023455172" @default.
- W2023455172 workType "article" @default.