Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023488238> ?p ?o ?g. }
- W2023488238 endingPage "405" @default.
- W2023488238 startingPage "396" @default.
- W2023488238 abstract "Machine learning is concerned with the design and development of algorithms and techniques that allow computers to “learn” patterns in data using iterative processes. Such processes can be supervised (guided by a priori group membership information) or unsupervised (guided by patterns within the data). Machine learning classifiers (MLC) are unconstrained by statistical assumptions and therefore are adaptable to complex data. Recent applications of MLC techniques to the detection and monitoring of glaucoma by analysis of visual field and optical imaging data suggest that these methods can provide improvement over currently available techniques. This article provides some background about the classification task in glaucoma and the structure and evaluation of MLCs, and it reviews MLC techniques as they have been applied to visual function and optical imaging in glaucoma research." @default.
- W2023488238 created "2016-06-24" @default.
- W2023488238 creator A5009959838 @default.
- W2023488238 creator A5076490467 @default.
- W2023488238 date "2008-06-01" @default.
- W2023488238 modified "2023-10-03" @default.
- W2023488238 title "Machine Learning Classifiers in Glaucoma" @default.
- W2023488238 cites W1498436455 @default.
- W2023488238 cites W1783352676 @default.
- W2023488238 cites W1978159650 @default.
- W2023488238 cites W1990748933 @default.
- W2023488238 cites W1991755985 @default.
- W2023488238 cites W1992772258 @default.
- W2023488238 cites W2001109731 @default.
- W2023488238 cites W2018077779 @default.
- W2023488238 cites W2018868751 @default.
- W2023488238 cites W2021746932 @default.
- W2023488238 cites W2029017535 @default.
- W2023488238 cites W2034753561 @default.
- W2023488238 cites W2040870580 @default.
- W2023488238 cites W2047178949 @default.
- W2023488238 cites W2064980575 @default.
- W2023488238 cites W2076273077 @default.
- W2023488238 cites W2083775363 @default.
- W2023488238 cites W2084362125 @default.
- W2023488238 cites W2084782093 @default.
- W2023488238 cites W2089510593 @default.
- W2023488238 cites W2090577196 @default.
- W2023488238 cites W2094542085 @default.
- W2023488238 cites W2100013834 @default.
- W2023488238 cites W2105060685 @default.
- W2023488238 cites W2106049361 @default.
- W2023488238 cites W2107476882 @default.
- W2023488238 cites W2110428441 @default.
- W2023488238 cites W2133671386 @default.
- W2023488238 cites W2142951908 @default.
- W2023488238 cites W2145134508 @default.
- W2023488238 cites W2162187603 @default.
- W2023488238 cites W2203097267 @default.
- W2023488238 cites W2328176404 @default.
- W2023488238 cites W2405741104 @default.
- W2023488238 cites W4242563711 @default.
- W2023488238 cites W65738273 @default.
- W2023488238 doi "https://doi.org/10.1097/opx.0b013e3181783ab6" @default.
- W2023488238 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18521021" @default.
- W2023488238 hasPublicationYear "2008" @default.
- W2023488238 type Work @default.
- W2023488238 sameAs 2023488238 @default.
- W2023488238 citedByCount "30" @default.
- W2023488238 countsByYear W20234882382012 @default.
- W2023488238 countsByYear W20234882382014 @default.
- W2023488238 countsByYear W20234882382016 @default.
- W2023488238 countsByYear W20234882382017 @default.
- W2023488238 countsByYear W20234882382018 @default.
- W2023488238 countsByYear W20234882382019 @default.
- W2023488238 countsByYear W20234882382020 @default.
- W2023488238 countsByYear W20234882382021 @default.
- W2023488238 countsByYear W20234882382022 @default.
- W2023488238 crossrefType "journal-article" @default.
- W2023488238 hasAuthorship W2023488238A5009959838 @default.
- W2023488238 hasAuthorship W2023488238A5076490467 @default.
- W2023488238 hasConcept C111472728 @default.
- W2023488238 hasConcept C118487528 @default.
- W2023488238 hasConcept C119857082 @default.
- W2023488238 hasConcept C138885662 @default.
- W2023488238 hasConcept C153180895 @default.
- W2023488238 hasConcept C154945302 @default.
- W2023488238 hasConcept C202444582 @default.
- W2023488238 hasConcept C2778527774 @default.
- W2023488238 hasConcept C33923547 @default.
- W2023488238 hasConcept C41008148 @default.
- W2023488238 hasConcept C71924100 @default.
- W2023488238 hasConcept C75553542 @default.
- W2023488238 hasConcept C8038995 @default.
- W2023488238 hasConcept C9652623 @default.
- W2023488238 hasConceptScore W2023488238C111472728 @default.
- W2023488238 hasConceptScore W2023488238C118487528 @default.
- W2023488238 hasConceptScore W2023488238C119857082 @default.
- W2023488238 hasConceptScore W2023488238C138885662 @default.
- W2023488238 hasConceptScore W2023488238C153180895 @default.
- W2023488238 hasConceptScore W2023488238C154945302 @default.
- W2023488238 hasConceptScore W2023488238C202444582 @default.
- W2023488238 hasConceptScore W2023488238C2778527774 @default.
- W2023488238 hasConceptScore W2023488238C33923547 @default.
- W2023488238 hasConceptScore W2023488238C41008148 @default.
- W2023488238 hasConceptScore W2023488238C71924100 @default.
- W2023488238 hasConceptScore W2023488238C75553542 @default.
- W2023488238 hasConceptScore W2023488238C8038995 @default.
- W2023488238 hasConceptScore W2023488238C9652623 @default.
- W2023488238 hasIssue "6" @default.
- W2023488238 hasLocation W20234882381 @default.
- W2023488238 hasLocation W20234882382 @default.
- W2023488238 hasOpenAccess W2023488238 @default.
- W2023488238 hasPrimaryLocation W20234882381 @default.
- W2023488238 hasRelatedWork W3007915134 @default.
- W2023488238 hasRelatedWork W3046775127 @default.
- W2023488238 hasRelatedWork W3123344745 @default.
- W2023488238 hasRelatedWork W3196155444 @default.