Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023498648> ?p ?o ?g. }
- W2023498648 endingPage "165" @default.
- W2023498648 startingPage "145" @default.
- W2023498648 abstract "We consider recurrent neural networks which deal with symbolic formulas, terms, or, generally speaking, tree-structured data. Approaches like the recursive autoassociative memory, discrete-time recurrent networks, folding networks, tensor construction, holographic reduced representations, and recursive reduced descriptions fall into this category. They share the basic dynamics of how structured data are processed: the approaches recursively encode symbolic data into a connectionistic representation or decode symbolic data from a connectionistic representation by means of a simple neural function. In this paper, we give an overview of the ability of neural networks with these dynamics to encode and decode tree-structured symbolic data. The correlated tasks, approximating and learning mappings where the input domain or the output domain may consist of structured symbolic data, are examined as well." @default.
- W2023498648 created "2016-06-24" @default.
- W2023498648 creator A5091180862 @default.
- W2023498648 date "2002-06-01" @default.
- W2023498648 modified "2023-09-27" @default.
- W2023498648 title "Recurrent networks for structured data – A unifying approach and its properties" @default.
- W2023498648 cites W1967465676 @default.
- W2023498648 cites W1971844566 @default.
- W2023498648 cites W1987346796 @default.
- W2023498648 cites W1995921430 @default.
- W2023498648 cites W1998937898 @default.
- W2023498648 cites W2003035818 @default.
- W2023498648 cites W2013494846 @default.
- W2023498648 cites W2050076818 @default.
- W2023498648 cites W2050778826 @default.
- W2023498648 cites W2052378399 @default.
- W2023498648 cites W2053955420 @default.
- W2023498648 cites W2053987251 @default.
- W2023498648 cites W2065771184 @default.
- W2023498648 cites W2066396564 @default.
- W2023498648 cites W2082345008 @default.
- W2023498648 cites W2106491486 @default.
- W2023498648 cites W2107878631 @default.
- W2023498648 cites W2108383531 @default.
- W2023498648 cites W2112036221 @default.
- W2023498648 cites W2112649152 @default.
- W2023498648 cites W2127329379 @default.
- W2023498648 cites W2127827747 @default.
- W2023498648 cites W2134702682 @default.
- W2023498648 cites W2137983211 @default.
- W2023498648 cites W2156582723 @default.
- W2023498648 cites W2156845006 @default.
- W2023498648 cites W2157306293 @default.
- W2023498648 cites W2165758113 @default.
- W2023498648 cites W2169415433 @default.
- W2023498648 cites W2169710839 @default.
- W2023498648 cites W2324246348 @default.
- W2023498648 cites W4238893454 @default.
- W2023498648 doi "https://doi.org/10.1016/s1389-0417(01)00056-0" @default.
- W2023498648 hasPublicationYear "2002" @default.
- W2023498648 type Work @default.
- W2023498648 sameAs 2023498648 @default.
- W2023498648 citedByCount "31" @default.
- W2023498648 countsByYear W20234986482012 @default.
- W2023498648 countsByYear W20234986482015 @default.
- W2023498648 countsByYear W20234986482016 @default.
- W2023498648 countsByYear W20234986482017 @default.
- W2023498648 countsByYear W20234986482019 @default.
- W2023498648 countsByYear W20234986482020 @default.
- W2023498648 countsByYear W20234986482021 @default.
- W2023498648 countsByYear W20234986482022 @default.
- W2023498648 crossrefType "journal-article" @default.
- W2023498648 hasAuthorship W2023498648A5091180862 @default.
- W2023498648 hasConcept C104317684 @default.
- W2023498648 hasConcept C111472728 @default.
- W2023498648 hasConcept C113174947 @default.
- W2023498648 hasConcept C134306372 @default.
- W2023498648 hasConcept C138885662 @default.
- W2023498648 hasConcept C14036430 @default.
- W2023498648 hasConcept C147168706 @default.
- W2023498648 hasConcept C154945302 @default.
- W2023498648 hasConcept C162319229 @default.
- W2023498648 hasConcept C163797641 @default.
- W2023498648 hasConcept C17744445 @default.
- W2023498648 hasConcept C185592680 @default.
- W2023498648 hasConcept C199360897 @default.
- W2023498648 hasConcept C199539241 @default.
- W2023498648 hasConcept C2776359362 @default.
- W2023498648 hasConcept C2780586882 @default.
- W2023498648 hasConcept C33923547 @default.
- W2023498648 hasConcept C36503486 @default.
- W2023498648 hasConcept C41008148 @default.
- W2023498648 hasConcept C50644808 @default.
- W2023498648 hasConcept C55493867 @default.
- W2023498648 hasConcept C66746571 @default.
- W2023498648 hasConcept C78458016 @default.
- W2023498648 hasConcept C80444323 @default.
- W2023498648 hasConcept C86803240 @default.
- W2023498648 hasConcept C94625758 @default.
- W2023498648 hasConceptScore W2023498648C104317684 @default.
- W2023498648 hasConceptScore W2023498648C111472728 @default.
- W2023498648 hasConceptScore W2023498648C113174947 @default.
- W2023498648 hasConceptScore W2023498648C134306372 @default.
- W2023498648 hasConceptScore W2023498648C138885662 @default.
- W2023498648 hasConceptScore W2023498648C14036430 @default.
- W2023498648 hasConceptScore W2023498648C147168706 @default.
- W2023498648 hasConceptScore W2023498648C154945302 @default.
- W2023498648 hasConceptScore W2023498648C162319229 @default.
- W2023498648 hasConceptScore W2023498648C163797641 @default.
- W2023498648 hasConceptScore W2023498648C17744445 @default.
- W2023498648 hasConceptScore W2023498648C185592680 @default.
- W2023498648 hasConceptScore W2023498648C199360897 @default.
- W2023498648 hasConceptScore W2023498648C199539241 @default.
- W2023498648 hasConceptScore W2023498648C2776359362 @default.
- W2023498648 hasConceptScore W2023498648C2780586882 @default.
- W2023498648 hasConceptScore W2023498648C33923547 @default.
- W2023498648 hasConceptScore W2023498648C36503486 @default.
- W2023498648 hasConceptScore W2023498648C41008148 @default.