Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023507253> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2023507253 endingPage "303" @default.
- W2023507253 startingPage "289" @default.
- W2023507253 abstract "The absence of traffic surveillance infrastructure, in many developing countries, hinders any efforts for dealing with the daily witnessed traffic chaos. The use of the cellular phone (CP) network data for traffic data collection is a promising option for large-scale coverage, given a high CP penetration rate. This article presents a bilevel procedure for the extraction of classified vehicular traffic counts for different vehicle types, in a given roadway segment, for intercity travel. The bilevel procedure operates in an offline setting, independent from any secondary traffic surveillance system. At the first level, cellular phones on board the same vehicle are clustered using a “data swarm clustering” algorithm. At the second level, a genetic fuzzy classifier (GFC) is used for vehicles classification. The development and testing of the proposed procedure was conducted using a traffic/CP simulation platform. At the development phase, the swarm-based clustering algorithm achieved 93% clustering accuracy (vehicle count accuracy). At the second level, the fuzzy classifier successfully classified around 85% of the vehicles. The procedure was further evaluated using a microsimulation model of a major travel corridor in the Greater Cairo Region, Egypt. Superior performance was achieved, at the clustering level, with an accuracy of 97.6%. The revealed accuracy demonstrates the efficiency of the developed procedure for extracting unclassified vehicular counts from CP data. At the classification level, accuracy was reduced to 70.6 ± 11.5%. Achieved classification results are promising from a conceptual perspective. Nevertheless, further investigation is crucial for enhanced classification performance and robustness." @default.
- W2023507253 created "2016-06-24" @default.
- W2023507253 creator A5034991794 @default.
- W2023507253 creator A5077128093 @default.
- W2023507253 date "2014-07-11" @default.
- W2023507253 modified "2023-09-26" @default.
- W2023507253 title "A Bilevel Traffic Data Extraction Procedure via Cellular Phone Network for Intercity Travel" @default.
- W2023507253 cites W1547841921 @default.
- W2023507253 cites W1567819691 @default.
- W2023507253 cites W182640810 @default.
- W2023507253 cites W1980596771 @default.
- W2023507253 cites W1988864670 @default.
- W2023507253 cites W2016086965 @default.
- W2023507253 cites W2017065517 @default.
- W2023507253 cites W2026754475 @default.
- W2023507253 cites W2033286692 @default.
- W2023507253 cites W2057717789 @default.
- W2023507253 cites W2093620744 @default.
- W2023507253 cites W2097460058 @default.
- W2023507253 cites W2112373961 @default.
- W2023507253 cites W2114085961 @default.
- W2023507253 cites W2478859391 @default.
- W2023507253 cites W2482582593 @default.
- W2023507253 cites W4210315508 @default.
- W2023507253 cites W4234406933 @default.
- W2023507253 cites W84428182 @default.
- W2023507253 cites W972907206 @default.
- W2023507253 doi "https://doi.org/10.1080/15472450.2014.892380" @default.
- W2023507253 hasPublicationYear "2014" @default.
- W2023507253 type Work @default.
- W2023507253 sameAs 2023507253 @default.
- W2023507253 citedByCount "7" @default.
- W2023507253 countsByYear W20235072532015 @default.
- W2023507253 countsByYear W20235072532017 @default.
- W2023507253 countsByYear W20235072532018 @default.
- W2023507253 countsByYear W20235072532020 @default.
- W2023507253 countsByYear W20235072532021 @default.
- W2023507253 crossrefType "journal-article" @default.
- W2023507253 hasAuthorship W2023507253A5034991794 @default.
- W2023507253 hasAuthorship W2023507253A5077128093 @default.
- W2023507253 hasConcept C104317684 @default.
- W2023507253 hasConcept C124101348 @default.
- W2023507253 hasConcept C154945302 @default.
- W2023507253 hasConcept C17212007 @default.
- W2023507253 hasConcept C185592680 @default.
- W2023507253 hasConcept C41008148 @default.
- W2023507253 hasConcept C55493867 @default.
- W2023507253 hasConcept C58166 @default.
- W2023507253 hasConcept C63479239 @default.
- W2023507253 hasConcept C73555534 @default.
- W2023507253 hasConcept C79403827 @default.
- W2023507253 hasConceptScore W2023507253C104317684 @default.
- W2023507253 hasConceptScore W2023507253C124101348 @default.
- W2023507253 hasConceptScore W2023507253C154945302 @default.
- W2023507253 hasConceptScore W2023507253C17212007 @default.
- W2023507253 hasConceptScore W2023507253C185592680 @default.
- W2023507253 hasConceptScore W2023507253C41008148 @default.
- W2023507253 hasConceptScore W2023507253C55493867 @default.
- W2023507253 hasConceptScore W2023507253C58166 @default.
- W2023507253 hasConceptScore W2023507253C63479239 @default.
- W2023507253 hasConceptScore W2023507253C73555534 @default.
- W2023507253 hasConceptScore W2023507253C79403827 @default.
- W2023507253 hasIssue "3" @default.
- W2023507253 hasLocation W20235072531 @default.
- W2023507253 hasOpenAccess W2023507253 @default.
- W2023507253 hasPrimaryLocation W20235072531 @default.
- W2023507253 hasRelatedWork W1698234622 @default.
- W2023507253 hasRelatedWork W2072494908 @default.
- W2023507253 hasRelatedWork W2160396543 @default.
- W2023507253 hasRelatedWork W2165695836 @default.
- W2023507253 hasRelatedWork W2273660186 @default.
- W2023507253 hasRelatedWork W2398543122 @default.
- W2023507253 hasRelatedWork W2608738689 @default.
- W2023507253 hasRelatedWork W2941132005 @default.
- W2023507253 hasRelatedWork W4200264217 @default.
- W2023507253 hasRelatedWork W4220795558 @default.
- W2023507253 hasVolume "19" @default.
- W2023507253 isParatext "false" @default.
- W2023507253 isRetracted "false" @default.
- W2023507253 magId "2023507253" @default.
- W2023507253 workType "article" @default.