Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023541861> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2023541861 endingPage "451" @default.
- W2023541861 startingPage "450" @default.
- W2023541861 abstract "Liver elastography, using ultrasound transient elastography (UTE) or magnetic resonance elastography (MRE), and serum fibrosis markers have been used separately to predict liver fibrosis stage in chronic liver disease.1, 2 Combined use of elastography and fibrosis markers may be a superior method. Algorithms for combined use of serum markers and elastography have been proposed, with specific cut-off values being used in the decision trees.3-5 However, a cut-off value for staging always involves a compromise between sensitivity and specificity. The use of Bayesian prediction to stage liver fibrosis involves calculating the stage based on elastographic or serum biomarker measures (see Appendix). The probability of a certain fibrosis stage can be calculated after obtaining the stiffness value of the patient's liver or the aspartate aminotransferase-to-platelet ratio index (APRI) value. Table 1 shows the results of fibrosis stage prediction in 20 patients who underwent liver resection and had elastography (both MRE and UTE) and serum fibrosis biomarkers before surgery. Histological fibrosis stage is shown by the METAVIR score. Respective cut-off values for the APRI, UTE, and MRE were 0.5, 5.2, and 3.2 kPa for significant fibrosis (≥F2) and 2.0, 12.9, and 4.6 kPa for cirrhosis (F4).6, 7 Accuracy of fibrosis staging was compared between APRI and APRI with UTE and between APRI and APRI with MRE using Bayesian methods. The Bayesian method successfully combined APRI and UTE/MRE, with a significant increase in accuracy; the decision-tree cut-off method failed to increase accuracy after combining elastography with APRI. An advantage of Bayesian prediction over the cut-off method is its applicability over a range of conditions. Once the mean and standard deviation (SD) of various elastographic and serum fibrosis markers have been determined, a combinational probability estimate can be obtained for the fibrosis stage. Furthermore, the Bayesian prediction provides probabilities, rather than a yes/no decision (Fig. 1), allowing the predicted stage to be questioned if the associated probability is too low. The Bayesian method also allows weighting of the different methods. A small SD indicates a method with high validity, and the Bayesian prediction reflects the SD in the probability. Two representative cases are shown. Case 1, with histological fibrosis (stage F3), had an APRI of 1.65, indicating significant fibrosis, but not cirrhosis. A value of 16.0 kPa, by UTE, indicated cirrhosis, whereas noncirrhosis, but significant fibrosis, were suggested by a 3.6-kPa value by MRE. Staging discordance was observed in the combined APRI and UTE using the cut-off method. As shown in the bar graph, the Bayesian method depicts the probability of each fibrosis stage. In case 2, the Bayesian method simply suggested that the APRI result would be equivocal. A limitation of this approach is the assumed normal distribution of values returned by each method. However, the use of Bayesian prediction, incorporating relevant findings from the available methods, is a promising technique for accurate liver fibrosis staging. A Bayesian prediction model for liver fibrosis staging, including a detailed explanation of the model, is available at http://yamarad.umin.ne.jp/bayesian/. Utaroh Motosugi M.D.*, Tomoaki IChicahua M.D.*, Tsutomu Araki M.D.*, Masanori Matsuda M.D. , HHideki Fujii M.D. , Nobuyuki Enomoto M.D. , * Department of Radiology University of Yamanashi, Yamanashi, Japan, First Department of Surgery, University of Yamanashi, Yamanashi, Japan, First Department of Internal Medicine, University of Yamanashi, Yamanashi, Japan." @default.
- W2023541861 created "2016-06-24" @default.
- W2023541861 creator A5030998282 @default.
- W2023541861 creator A5031271522 @default.
- W2023541861 creator A5036824051 @default.
- W2023541861 creator A5037423839 @default.
- W2023541861 creator A5058386183 @default.
- W2023541861 creator A5059583115 @default.
- W2023541861 date "2013-04-26" @default.
- W2023541861 modified "2023-09-27" @default.
- W2023541861 title "Bayesian prediction for liver fibrosis staging: Combined use of elastography and serum fibrosis markers" @default.
- W2023541861 cites W1987349835 @default.
- W2023541861 cites W2016393423 @default.
- W2023541861 cites W2027498662 @default.
- W2023541861 cites W2058592552 @default.
- W2023541861 cites W2068904694 @default.
- W2023541861 cites W2092097754 @default.
- W2023541861 cites W2107649622 @default.
- W2023541861 doi "https://doi.org/10.1002/hep.26144" @default.
- W2023541861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23172594" @default.
- W2023541861 hasPublicationYear "2013" @default.
- W2023541861 type Work @default.
- W2023541861 sameAs 2023541861 @default.
- W2023541861 citedByCount "9" @default.
- W2023541861 countsByYear W20235418612014 @default.
- W2023541861 countsByYear W20235418612015 @default.
- W2023541861 countsByYear W20235418612016 @default.
- W2023541861 countsByYear W20235418612017 @default.
- W2023541861 countsByYear W20235418612018 @default.
- W2023541861 countsByYear W20235418612019 @default.
- W2023541861 crossrefType "journal-article" @default.
- W2023541861 hasAuthorship W2023541861A5030998282 @default.
- W2023541861 hasAuthorship W2023541861A5031271522 @default.
- W2023541861 hasAuthorship W2023541861A5036824051 @default.
- W2023541861 hasAuthorship W2023541861A5037423839 @default.
- W2023541861 hasAuthorship W2023541861A5058386183 @default.
- W2023541861 hasAuthorship W2023541861A5059583115 @default.
- W2023541861 hasBestOaLocation W20235418611 @default.
- W2023541861 hasConcept C126322002 @default.
- W2023541861 hasConcept C126838900 @default.
- W2023541861 hasConcept C142724271 @default.
- W2023541861 hasConcept C143753070 @default.
- W2023541861 hasConcept C146357865 @default.
- W2023541861 hasConcept C151730666 @default.
- W2023541861 hasConcept C2777214474 @default.
- W2023541861 hasConcept C2777690781 @default.
- W2023541861 hasConcept C2779102576 @default.
- W2023541861 hasConcept C2779124084 @default.
- W2023541861 hasConcept C2780559512 @default.
- W2023541861 hasConcept C2780826214 @default.
- W2023541861 hasConcept C2993667909 @default.
- W2023541861 hasConcept C2994217296 @default.
- W2023541861 hasConcept C71924100 @default.
- W2023541861 hasConcept C86803240 @default.
- W2023541861 hasConcept C90924648 @default.
- W2023541861 hasConceptScore W2023541861C126322002 @default.
- W2023541861 hasConceptScore W2023541861C126838900 @default.
- W2023541861 hasConceptScore W2023541861C142724271 @default.
- W2023541861 hasConceptScore W2023541861C143753070 @default.
- W2023541861 hasConceptScore W2023541861C146357865 @default.
- W2023541861 hasConceptScore W2023541861C151730666 @default.
- W2023541861 hasConceptScore W2023541861C2777214474 @default.
- W2023541861 hasConceptScore W2023541861C2777690781 @default.
- W2023541861 hasConceptScore W2023541861C2779102576 @default.
- W2023541861 hasConceptScore W2023541861C2779124084 @default.
- W2023541861 hasConceptScore W2023541861C2780559512 @default.
- W2023541861 hasConceptScore W2023541861C2780826214 @default.
- W2023541861 hasConceptScore W2023541861C2993667909 @default.
- W2023541861 hasConceptScore W2023541861C2994217296 @default.
- W2023541861 hasConceptScore W2023541861C71924100 @default.
- W2023541861 hasConceptScore W2023541861C86803240 @default.
- W2023541861 hasConceptScore W2023541861C90924648 @default.
- W2023541861 hasIssue "1" @default.
- W2023541861 hasLocation W20235418611 @default.
- W2023541861 hasLocation W20235418612 @default.
- W2023541861 hasOpenAccess W2023541861 @default.
- W2023541861 hasPrimaryLocation W20235418611 @default.
- W2023541861 hasRelatedWork W1916765493 @default.
- W2023541861 hasRelatedWork W2009135063 @default.
- W2023541861 hasRelatedWork W2026400761 @default.
- W2023541861 hasRelatedWork W2038598316 @default.
- W2023541861 hasRelatedWork W2056095836 @default.
- W2023541861 hasRelatedWork W2137352689 @default.
- W2023541861 hasRelatedWork W2386361098 @default.
- W2023541861 hasRelatedWork W2577971132 @default.
- W2023541861 hasRelatedWork W2770458351 @default.
- W2023541861 hasRelatedWork W4299084341 @default.
- W2023541861 hasVolume "58" @default.
- W2023541861 isParatext "false" @default.
- W2023541861 isRetracted "false" @default.
- W2023541861 magId "2023541861" @default.
- W2023541861 workType "article" @default.