Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023542942> ?p ?o ?g. }
- W2023542942 endingPage "62" @default.
- W2023542942 startingPage "49" @default.
- W2023542942 abstract "The amount, quality and bioavailability of organic matter stored in permafrost soils are important factors determining the response of high-latitude soils to climate warming. In this study, we investigated the storage and composition (isotopic composition, lignin, pyrogenic carbon) of organic matter in mineral soils which are differently affected by permafrost, and we determined the potential CO2 emission, CH4 exchange and N2O emission of these soils at different temperature (5 °C and 15 °C) and moisture (60% of the maximum water-holding capacity [WHC] and completely water saturated) in a laboratory incubation experiment. Soil samples were collected in the summer of 2002 and 2003 from the mineral soils of the Grawijka Creek catchment in the Siberian forest tundra and for comparison, from a fertilized grassland in Germany. The depth of the seasonal thaw layer of the Siberian soils ranged from 15 cm to > 90 cm and was greater in soils located on slopes than in soils of plane areas where drainage was poor and soils showed gleyic properties. The soil organic carbon (SOC) concentration ranged from 14 to 74 g kg− 1 in the upper 20 cm and from 5 to 128 g kg− 1 in the subsoil. The total SOC and N accumulation in the upper 30–40 cm were larger in soils with a seasonal thaw layer < 40 cm (up to 23 kg C m− 2 and 1.3 kg N m− 2) than in soils without permafrost in the upper 90 cm (approximately 8 kg C m− 2 and 0.6 kg N m− 2). The concentration of lignin-derived CuO oxidation products in soil OC were larger in a soil without permafrost than in the permafrost soils in which lignin oxidation appears to be more advanced. All soil samples from the forest tundra contained considerable amounts of black carbon (up to 57 g C kg− 1 SOC), which indicates the importance of fire in this ecosystem. Water logging in the permafrost soils seems to restrain the decomposition of black carbon. Soil organic carbon mineralization in the gleyic permafrost soils increased by a factor of approximately 4 if soil temperature was raised from 5 to 15 °C and soil moisture reduced from complete water saturation to 60% WHC. Emission of N2O was negligible from all Siberian soils but very high from the fertilized grassland soil at complete water saturation. At 60% WHC, all forest tundra soils were a net-sink for atmospheric methane with significantly larger CH4 uptake in the A horizon of the soil without permafrost (∼ 0.1 ng CH4–C h− 1 g− 1) than in the A horizon of the permafrost soils (< 0.02 ng CH4–C h− 1 g− 1). The results show that permafrost distribution is an important factor determining storage and composition of SOC in the Grawijka Creek area and that permafrost distribution may considerably affect current and future net fluxes of the greenhouse gases CO2 and CH4 in this region." @default.
- W2023542942 created "2016-06-24" @default.
- W2023542942 creator A5035203201 @default.
- W2023542942 creator A5072191320 @default.
- W2023542942 creator A5078298688 @default.
- W2023542942 creator A5086718717 @default.
- W2023542942 date "2006-11-01" @default.
- W2023542942 modified "2023-10-18" @default.
- W2023542942 title "Organic matter composition and potential trace gas production of permafrost soils in the forest tundra in northern Siberia" @default.
- W2023542942 cites W102338123 @default.
- W2023542942 cites W1529492541 @default.
- W2023542942 cites W1583983841 @default.
- W2023542942 cites W1644402576 @default.
- W2023542942 cites W1965492324 @default.
- W2023542942 cites W1967051022 @default.
- W2023542942 cites W1969546457 @default.
- W2023542942 cites W1969649637 @default.
- W2023542942 cites W1973963075 @default.
- W2023542942 cites W1979211501 @default.
- W2023542942 cites W1990398902 @default.
- W2023542942 cites W1990615479 @default.
- W2023542942 cites W2000800001 @default.
- W2023542942 cites W2003044181 @default.
- W2023542942 cites W2007079915 @default.
- W2023542942 cites W2009435837 @default.
- W2023542942 cites W2046486608 @default.
- W2023542942 cites W2049137056 @default.
- W2023542942 cites W2050883790 @default.
- W2023542942 cites W2052653435 @default.
- W2023542942 cites W2056926674 @default.
- W2023542942 cites W2060453873 @default.
- W2023542942 cites W2061455793 @default.
- W2023542942 cites W2061797081 @default.
- W2023542942 cites W2065415496 @default.
- W2023542942 cites W2065828931 @default.
- W2023542942 cites W2069580501 @default.
- W2023542942 cites W2080828865 @default.
- W2023542942 cites W2081425869 @default.
- W2023542942 cites W2089610579 @default.
- W2023542942 cites W2092525110 @default.
- W2023542942 cites W2096852208 @default.
- W2023542942 cites W2100070262 @default.
- W2023542942 cites W2103958763 @default.
- W2023542942 cites W2104940013 @default.
- W2023542942 cites W2112404610 @default.
- W2023542942 cites W2114992792 @default.
- W2023542942 cites W2130744302 @default.
- W2023542942 cites W2138894417 @default.
- W2023542942 cites W2139432134 @default.
- W2023542942 cites W2142991772 @default.
- W2023542942 cites W2144491818 @default.
- W2023542942 cites W2145712743 @default.
- W2023542942 cites W2151415532 @default.
- W2023542942 cites W2160971763 @default.
- W2023542942 cites W2165101359 @default.
- W2023542942 cites W2165187845 @default.
- W2023542942 cites W2170180767 @default.
- W2023542942 cites W2170813263 @default.
- W2023542942 cites W4254926607 @default.
- W2023542942 cites W4255749590 @default.
- W2023542942 doi "https://doi.org/10.1016/j.geoderma.2005.10.008" @default.
- W2023542942 hasPublicationYear "2006" @default.
- W2023542942 type Work @default.
- W2023542942 sameAs 2023542942 @default.
- W2023542942 citedByCount "81" @default.
- W2023542942 countsByYear W20235429422012 @default.
- W2023542942 countsByYear W20235429422013 @default.
- W2023542942 countsByYear W20235429422014 @default.
- W2023542942 countsByYear W20235429422015 @default.
- W2023542942 countsByYear W20235429422016 @default.
- W2023542942 countsByYear W20235429422017 @default.
- W2023542942 countsByYear W20235429422018 @default.
- W2023542942 countsByYear W20235429422019 @default.
- W2023542942 countsByYear W20235429422020 @default.
- W2023542942 countsByYear W20235429422021 @default.
- W2023542942 countsByYear W20235429422022 @default.
- W2023542942 countsByYear W20235429422023 @default.
- W2023542942 crossrefType "journal-article" @default.
- W2023542942 hasAuthorship W2023542942A5035203201 @default.
- W2023542942 hasAuthorship W2023542942A5072191320 @default.
- W2023542942 hasAuthorship W2023542942A5078298688 @default.
- W2023542942 hasAuthorship W2023542942A5086718717 @default.
- W2023542942 hasConcept C107872376 @default.
- W2023542942 hasConcept C111368507 @default.
- W2023542942 hasConcept C121923324 @default.
- W2023542942 hasConcept C125069764 @default.
- W2023542942 hasConcept C127313418 @default.
- W2023542942 hasConcept C15098985 @default.
- W2023542942 hasConcept C158787203 @default.
- W2023542942 hasConcept C159390177 @default.
- W2023542942 hasConcept C159750122 @default.
- W2023542942 hasConcept C178790620 @default.
- W2023542942 hasConcept C185592680 @default.
- W2023542942 hasConcept C187320778 @default.
- W2023542942 hasConcept C20529654 @default.
- W2023542942 hasConcept C24939127 @default.
- W2023542942 hasConcept C39432304 @default.
- W2023542942 hasConcept C39464130 @default.