Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023557964> ?p ?o ?g. }
- W2023557964 endingPage "1643" @default.
- W2023557964 startingPage "1635" @default.
- W2023557964 abstract "Neural networks are nonparametric, robust, pattern recognition techniques that can be used to model complex relationships.The applicability of multilayer perceptron neural networks (MLP) to coronary artery bypass grafting risk prediction was assessed using The Society of Thoracic Surgeons database of 80,606 patients who underwent coronary artery bypass grafting in 1993. The results of traditional logistic regression and Bayesian analysis were compared with single-layer (no hidden layer), two-layer (one hidden layer), and three-layer (two hidden layer) MLP neural networks. These networks were trained using stochastic gradient descent with early stopping. All prediction models used the same variables and were evaluated by training on 40,480 patients and cross-validation testing on a separate group of 40,126 patients. Techniques were also developed to calculate effective odds ratios for MLP networks and to generate confidence intervals for MLP risk predictions using an auxiliary confidence MLP.Receiver operating characteristic curve areas for predicting mortality were approximately 76% for all classifiers, including neural networks. Calibration (accuracy of posterior probability prediction) was slightly better with a two-member committee classifier that averaged the outputs of a MLP network and a logistic regression model. Unlike the individual methods, the committee classifier did not overestimate or underestimate risk for high-risk patients.A committee classifier combining the best neural network and logistic regression provided the best model calibration, but the receiver operating characteristic curve area was only 76% irrespective of which predictive model was used." @default.
- W2023557964 created "2016-06-24" @default.
- W2023557964 creator A5032807955 @default.
- W2023557964 creator A5043314383 @default.
- W2023557964 date "1997-06-01" @default.
- W2023557964 modified "2023-09-25" @default.
- W2023557964 title "Coronary Artery Bypass Risk Prediction Using Neural Networks" @default.
- W2023557964 cites W1972258819 @default.
- W2023557964 cites W1978519316 @default.
- W2023557964 cites W1980529513 @default.
- W2023557964 cites W1981347053 @default.
- W2023557964 cites W1985479520 @default.
- W2023557964 cites W1988464782 @default.
- W2023557964 cites W1990748933 @default.
- W2023557964 cites W1995792743 @default.
- W2023557964 cites W2008065185 @default.
- W2023557964 cites W2012727722 @default.
- W2023557964 cites W2012914143 @default.
- W2023557964 cites W2020083394 @default.
- W2023557964 cites W2020581428 @default.
- W2023557964 cites W2029636635 @default.
- W2023557964 cites W2036131137 @default.
- W2023557964 cites W2036892397 @default.
- W2023557964 cites W2047016835 @default.
- W2023557964 cites W2050446316 @default.
- W2023557964 cites W2060419563 @default.
- W2023557964 cites W2063507658 @default.
- W2023557964 cites W2071419812 @default.
- W2023557964 cites W2073940810 @default.
- W2023557964 cites W2079881377 @default.
- W2023557964 cites W2080585630 @default.
- W2023557964 cites W2092087236 @default.
- W2023557964 cites W2123715374 @default.
- W2023557964 cites W2157825442 @default.
- W2023557964 doi "https://doi.org/10.1016/s0003-4975(97)00225-7" @default.
- W2023557964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9205161" @default.
- W2023557964 hasPublicationYear "1997" @default.
- W2023557964 type Work @default.
- W2023557964 sameAs 2023557964 @default.
- W2023557964 citedByCount "77" @default.
- W2023557964 countsByYear W20235579642012 @default.
- W2023557964 countsByYear W20235579642013 @default.
- W2023557964 countsByYear W20235579642014 @default.
- W2023557964 countsByYear W20235579642015 @default.
- W2023557964 countsByYear W20235579642016 @default.
- W2023557964 countsByYear W20235579642017 @default.
- W2023557964 countsByYear W20235579642019 @default.
- W2023557964 countsByYear W20235579642020 @default.
- W2023557964 countsByYear W20235579642021 @default.
- W2023557964 countsByYear W20235579642022 @default.
- W2023557964 countsByYear W20235579642023 @default.
- W2023557964 crossrefType "journal-article" @default.
- W2023557964 hasAuthorship W2023557964A5032807955 @default.
- W2023557964 hasAuthorship W2023557964A5043314383 @default.
- W2023557964 hasConcept C105795698 @default.
- W2023557964 hasConcept C11783203 @default.
- W2023557964 hasConcept C119857082 @default.
- W2023557964 hasConcept C126322002 @default.
- W2023557964 hasConcept C151956035 @default.
- W2023557964 hasConcept C154945302 @default.
- W2023557964 hasConcept C179717631 @default.
- W2023557964 hasConcept C2779134260 @default.
- W2023557964 hasConcept C33923547 @default.
- W2023557964 hasConcept C41008148 @default.
- W2023557964 hasConcept C44249647 @default.
- W2023557964 hasConcept C50644808 @default.
- W2023557964 hasConcept C58471807 @default.
- W2023557964 hasConcept C71924100 @default.
- W2023557964 hasConcept C95623464 @default.
- W2023557964 hasConceptScore W2023557964C105795698 @default.
- W2023557964 hasConceptScore W2023557964C11783203 @default.
- W2023557964 hasConceptScore W2023557964C119857082 @default.
- W2023557964 hasConceptScore W2023557964C126322002 @default.
- W2023557964 hasConceptScore W2023557964C151956035 @default.
- W2023557964 hasConceptScore W2023557964C154945302 @default.
- W2023557964 hasConceptScore W2023557964C179717631 @default.
- W2023557964 hasConceptScore W2023557964C2779134260 @default.
- W2023557964 hasConceptScore W2023557964C33923547 @default.
- W2023557964 hasConceptScore W2023557964C41008148 @default.
- W2023557964 hasConceptScore W2023557964C44249647 @default.
- W2023557964 hasConceptScore W2023557964C50644808 @default.
- W2023557964 hasConceptScore W2023557964C58471807 @default.
- W2023557964 hasConceptScore W2023557964C71924100 @default.
- W2023557964 hasConceptScore W2023557964C95623464 @default.
- W2023557964 hasIssue "6" @default.
- W2023557964 hasLocation W20235579641 @default.
- W2023557964 hasLocation W20235579642 @default.
- W2023557964 hasOpenAccess W2023557964 @default.
- W2023557964 hasPrimaryLocation W20235579641 @default.
- W2023557964 hasRelatedWork W1963576904 @default.
- W2023557964 hasRelatedWork W1969210846 @default.
- W2023557964 hasRelatedWork W2057460664 @default.
- W2023557964 hasRelatedWork W2465911618 @default.
- W2023557964 hasRelatedWork W2611007169 @default.
- W2023557964 hasRelatedWork W2963140487 @default.
- W2023557964 hasRelatedWork W3003383774 @default.
- W2023557964 hasRelatedWork W3147757603 @default.
- W2023557964 hasRelatedWork W3191223673 @default.