Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023563558> ?p ?o ?g. }
- W2023563558 endingPage "333" @default.
- W2023563558 startingPage "301" @default.
- W2023563558 abstract "At the present time we know little about how microbial communities function in their natural habitats. For example, how do microorganisms interact with each other and their physical and chemical surroundings and respond to environmental perturbations? We might begin to answer these questions if we could monitor the ways in which metabolic roles are partitioned amongst members as microbial communities assemble, determine how resources such as carbon, nitrogen, and energy are allocated into metabolic pathways, and understand the mechanisms by which organisms and communities respond to changes in their surroundings. Because many organisms cannot be cultivated, and given that the metabolisms of those growing in monoculture are likely to differ from those of organisms growing as part of consortia, it is vital to develop methods to study microbial communities in situ. Chemoautotrophic biofilms growing in mine tunnels hundreds of meters underground drive pyrite (FeS2) dissolution and acid and metal release, creating habitats that select for a small number of organism types. The geochemical and microbial simplicity of these systems, the significant biomass, and clearly defined biological-inorganic feedbacks make these ecosystem microcosms ideal for development of methods for the study of uncultivated microbial consortia. Our approach begins with the acquisition of genomic data from biofilms that are sampled over time and in different growth conditions. We have demonstrated that it is possible to assemble shotgun sequence data to reveal the gene complement of the dominant community members and to use these data to confidently identify a significant fraction of proteins from the dominant organisms by mass spectrometry (MS)–based proteomics. However, there are technical obstacles currently restricting this type of proteogenomic analysis. Composite genomic sequences assembled from environmental data from natural microbial communities do not capture the full range of genetic potential of the associated populations. Thus, it is necessary to develop bioinformatics approaches to generate relatively comprehensive gene inventories for each organism type. These inventories are critical for expression and functional analyses. In proteomic studies, for example, peptides that differ from those predicted from gene sequences can be measured, but they generally cannot be identified by database matching, even if the difference is only a single amino acid residue. Furthermore, many of the identified proteins have no known function. We propose that these challenges can be addressed by development of proteogenomic, biochemical, and geochemical methods that will be initially deployed in a simple, natural model ecosystem. The resulting approach should be broadly applicable and will enhance the utility and significance of genomic data from isolates and consortia for study of organisms in many habitats. Solutions draining pyrite-rich deposits are referred to as acid mine drainage (AMD). AMD is a very prevalent, international environmental problem associated with energy and metal resources. The biological-mineralogical interactions that define these systems can be harnessed for energy-efficient metal recovery and removal of sulfur from coal. The detailed understanding of microbial ecology and ecosystem dynamics resulting from the proposed work will provide a scientific foundation for dealing with the environmental challenges and technological opportunities, and yield new methods for analysis of more complex natural communities." @default.
- W2023563558 created "2016-06-24" @default.
- W2023563558 creator A5002596998 @default.
- W2023563558 creator A5045273277 @default.
- W2023563558 creator A5045720453 @default.
- W2023563558 creator A5065638508 @default.
- W2023563558 date "2005-12-01" @default.
- W2023563558 modified "2023-09-23" @default.
- W2023563558 title "Proteogenomic Approaches for the Molecular Characterization of Natural Microbial Communities" @default.
- W2023563558 cites W145929350 @default.
- W2023563558 cites W1489122856 @default.
- W2023563558 cites W1507573241 @default.
- W2023563558 cites W1525750110 @default.
- W2023563558 cites W1530098185 @default.
- W2023563558 cites W1562379206 @default.
- W2023563558 cites W1581589795 @default.
- W2023563558 cites W1597678601 @default.
- W2023563558 cites W1806078023 @default.
- W2023563558 cites W1964227994 @default.
- W2023563558 cites W1969995117 @default.
- W2023563558 cites W1971147414 @default.
- W2023563558 cites W1971655977 @default.
- W2023563558 cites W1972771817 @default.
- W2023563558 cites W1975063462 @default.
- W2023563558 cites W1976065917 @default.
- W2023563558 cites W1976645829 @default.
- W2023563558 cites W1983480522 @default.
- W2023563558 cites W1986677482 @default.
- W2023563558 cites W1990453950 @default.
- W2023563558 cites W1994391661 @default.
- W2023563558 cites W2003921621 @default.
- W2023563558 cites W2007630146 @default.
- W2023563558 cites W2009172246 @default.
- W2023563558 cites W2026465178 @default.
- W2023563558 cites W2029330897 @default.
- W2023563558 cites W2029553332 @default.
- W2023563558 cites W2030832742 @default.
- W2023563558 cites W2033492963 @default.
- W2023563558 cites W2034291133 @default.
- W2023563558 cites W2040411624 @default.
- W2023563558 cites W2043807774 @default.
- W2023563558 cites W2044085624 @default.
- W2023563558 cites W2050425822 @default.
- W2023563558 cites W2062049401 @default.
- W2023563558 cites W2068481474 @default.
- W2023563558 cites W2079048673 @default.
- W2023563558 cites W2082047064 @default.
- W2023563558 cites W2084983188 @default.
- W2023563558 cites W2086540936 @default.
- W2023563558 cites W2091202236 @default.
- W2023563558 cites W2092244424 @default.
- W2023563558 cites W2095581582 @default.
- W2023563558 cites W2096462814 @default.
- W2023563558 cites W2099571549 @default.
- W2023563558 cites W2100667474 @default.
- W2023563558 cites W2103601429 @default.
- W2023563558 cites W2108344629 @default.
- W2023563558 cites W2109497857 @default.
- W2023563558 cites W2111208057 @default.
- W2023563558 cites W2113601822 @default.
- W2023563558 cites W2121009717 @default.
- W2023563558 cites W2121177733 @default.
- W2023563558 cites W2121702291 @default.
- W2023563558 cites W2124637227 @default.
- W2023563558 cites W2128786024 @default.
- W2023563558 cites W2130747214 @default.
- W2023563558 cites W2132926880 @default.
- W2023563558 cites W2138361239 @default.
- W2023563558 cites W2145268834 @default.
- W2023563558 cites W2147378425 @default.
- W2023563558 cites W2147443546 @default.
- W2023563558 cites W2147448256 @default.
- W2023563558 cites W2147531155 @default.
- W2023563558 cites W2147918509 @default.
- W2023563558 cites W2151041036 @default.
- W2023563558 cites W2153132589 @default.
- W2023563558 cites W2155367844 @default.
- W2023563558 cites W2156022009 @default.
- W2023563558 cites W2156745542 @default.
- W2023563558 cites W2157081519 @default.
- W2023563558 cites W2158714788 @default.
- W2023563558 cites W2160211110 @default.
- W2023563558 cites W2161303529 @default.
- W2023563558 cites W2162339138 @default.
- W2023563558 cites W2164174683 @default.
- W2023563558 cites W2165008186 @default.
- W2023563558 cites W2165509588 @default.
- W2023563558 cites W2171466419 @default.
- W2023563558 cites W2171777099 @default.
- W2023563558 cites W4205995961 @default.
- W2023563558 cites W4214911971 @default.
- W2023563558 cites W4229965754 @default.
- W2023563558 cites W4250120112 @default.
- W2023563558 cites W4251771011 @default.
- W2023563558 cites W4255719026 @default.
- W2023563558 doi "https://doi.org/10.1089/omi.2005.9.301" @default.
- W2023563558 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16402891" @default.
- W2023563558 hasPublicationYear "2005" @default.