Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023569971> ?p ?o ?g. }
- W2023569971 endingPage "81" @default.
- W2023569971 startingPage "57" @default.
- W2023569971 abstract "Recent developments in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) have enabled improvements in spatial resolution and analytical detection limits. Here, the analysis of individual glass shards from tephra deposits using a 193 nm Excimer laser (producing ablation craters as small as 4 μm diameter), coupled to a magnetic sector ICP-MS, is described. Analyses of individual glass shards with crater diameters of 20 μm and 10 μm is essentially routine, and when element fractionation is corrected for, good accuracy is achieved. Analytical precision is good, being around ±15–30% at 1 ppm and around ±2–3% at 500 ppm from 10 μm diameter ablation craters, and lower limits of detection (LLD) are <1 ppm for most elements from 10 μm craters, when 25–28 trace elements are determined in a ∼20 s analysis. Neither 44Ca nor 43Ca can be used reliably as the internal standard for the analysis of rhyolites from 10 μm ablation craters, because CaO is close to the lower limit of quantitation (LLQ); thus 29Si must be used, although either could be used in the analysis of basaltic glasses at 10 μm. With analyses at 6 μm or 4 μm, many trace elements in rhyolites (e.g. Zr, Ba, LREE, Y, Rb, U, Th) remain above the LLQ, but at this resolution, only Si can be used as an internal standard for glass analysis. Element fractionation is an issue for all analyses <20 μm in diameter, resulting from the formation of a thin melt film on the ablation crater walls. This melt film becomes an increasingly larger proportion of the volume of ablated material as crater diameters become smaller, because the surface area/volume ratio increases. Element retention or volatility from this melt film appears to cause much of the fractionation. For larger craters (20 μm) this fractionation appears to affect all compositions similarly. For many elements determined from smaller craters (10 μm–4 μm) there is a systematic variation in the degree of fractionation with the glass (and thus melt film) composition. This relates to a change in the degree of polymerisation of the glass, with, for example, the REE being the most fractionated in polymerised rhyolitic samples at the smallest crater diameters (4 μm). This systematic behaviour, however, offers some hope for the analysis of a selection of abundant trace elements in individual shards of glass using ablation craters of 6 μm and 4 μm in diameter." @default.
- W2023569971 created "2016-06-24" @default.
- W2023569971 creator A5023414525 @default.
- W2023569971 creator A5040018271 @default.
- W2023569971 creator A5088760910 @default.
- W2023569971 creator A5090561081 @default.
- W2023569971 date "2011-12-01" @default.
- W2023569971 modified "2023-10-10" @default.
- W2023569971 title "Trace-element microanalysis by LA-ICP-MS: The quest for comprehensive chemical characterisation of single, sub-10 μm volcanic glass shards" @default.
- W2023569971 cites W1846057075 @default.
- W2023569971 cites W1888179648 @default.
- W2023569971 cites W1925361172 @default.
- W2023569971 cites W1954964785 @default.
- W2023569971 cites W1964294434 @default.
- W2023569971 cites W1965071119 @default.
- W2023569971 cites W1968281829 @default.
- W2023569971 cites W1974766431 @default.
- W2023569971 cites W1976957354 @default.
- W2023569971 cites W1981712640 @default.
- W2023569971 cites W1986916716 @default.
- W2023569971 cites W1987734384 @default.
- W2023569971 cites W1989397170 @default.
- W2023569971 cites W1989935075 @default.
- W2023569971 cites W1990692757 @default.
- W2023569971 cites W1991480905 @default.
- W2023569971 cites W1996925747 @default.
- W2023569971 cites W1998837704 @default.
- W2023569971 cites W2002403064 @default.
- W2023569971 cites W2003879601 @default.
- W2023569971 cites W2004554392 @default.
- W2023569971 cites W2006096439 @default.
- W2023569971 cites W2007661953 @default.
- W2023569971 cites W2009390933 @default.
- W2023569971 cites W2015779193 @default.
- W2023569971 cites W2016989623 @default.
- W2023569971 cites W2018206452 @default.
- W2023569971 cites W2018918733 @default.
- W2023569971 cites W2024436619 @default.
- W2023569971 cites W2024447260 @default.
- W2023569971 cites W2027403799 @default.
- W2023569971 cites W2029404592 @default.
- W2023569971 cites W2030105000 @default.
- W2023569971 cites W2031945688 @default.
- W2023569971 cites W2032114554 @default.
- W2023569971 cites W2033884397 @default.
- W2023569971 cites W2040792553 @default.
- W2023569971 cites W2042827864 @default.
- W2023569971 cites W2046099396 @default.
- W2023569971 cites W2046328317 @default.
- W2023569971 cites W2046546586 @default.
- W2023569971 cites W2049425791 @default.
- W2023569971 cites W2051895615 @default.
- W2023569971 cites W2059613936 @default.
- W2023569971 cites W2060560302 @default.
- W2023569971 cites W2063168513 @default.
- W2023569971 cites W2064659412 @default.
- W2023569971 cites W2072062807 @default.
- W2023569971 cites W2073369132 @default.
- W2023569971 cites W2075382886 @default.
- W2023569971 cites W2076585944 @default.
- W2023569971 cites W2083868208 @default.
- W2023569971 cites W2086079701 @default.
- W2023569971 cites W2087940524 @default.
- W2023569971 cites W2088015140 @default.
- W2023569971 cites W2088439596 @default.
- W2023569971 cites W2095007390 @default.
- W2023569971 cites W2097223682 @default.
- W2023569971 cites W2100962223 @default.
- W2023569971 cites W2102602483 @default.
- W2023569971 cites W2109988281 @default.
- W2023569971 cites W2122873607 @default.
- W2023569971 cites W2123263573 @default.
- W2023569971 cites W2138027018 @default.
- W2023569971 cites W2145138604 @default.
- W2023569971 cites W2180569959 @default.
- W2023569971 cites W3088334550 @default.
- W2023569971 doi "https://doi.org/10.1016/j.quaint.2011.07.012" @default.
- W2023569971 hasPublicationYear "2011" @default.
- W2023569971 type Work @default.
- W2023569971 sameAs 2023569971 @default.
- W2023569971 citedByCount "86" @default.
- W2023569971 countsByYear W20235699712012 @default.
- W2023569971 countsByYear W20235699712013 @default.
- W2023569971 countsByYear W20235699712014 @default.
- W2023569971 countsByYear W20235699712015 @default.
- W2023569971 countsByYear W20235699712016 @default.
- W2023569971 countsByYear W20235699712017 @default.
- W2023569971 countsByYear W20235699712018 @default.
- W2023569971 countsByYear W20235699712019 @default.
- W2023569971 countsByYear W20235699712020 @default.
- W2023569971 countsByYear W20235699712021 @default.
- W2023569971 countsByYear W20235699712022 @default.
- W2023569971 countsByYear W20235699712023 @default.
- W2023569971 crossrefType "journal-article" @default.
- W2023569971 hasAuthorship W2023569971A5023414525 @default.
- W2023569971 hasAuthorship W2023569971A5040018271 @default.
- W2023569971 hasAuthorship W2023569971A5088760910 @default.
- W2023569971 hasAuthorship W2023569971A5090561081 @default.