Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023578721> ?p ?o ?g. }
- W2023578721 endingPage "111" @default.
- W2023578721 startingPage "101" @default.
- W2023578721 abstract "The human vision is usually considered a multiscale, hierarchical knowledge extraction system. Inspired by this fact, multiscale techniques for computer vision perform a sequential analysis, driven by different interpretations of the concept of scale. In the case of edge detection, the scale usually relates to the size of the region where the intensity changes are measured or to the size of the regularization filter applied before edge extraction. Multiscale edge detection methods constitute an effort to combine the spatial accuracy of fine-scale methods with the ability to deal with spurious responses inherent to coarse-scale methods. In this work we introduce a multiscale method for edge detection based on increasing Gaussian smoothing, the Sobel operators and coarse-to-fine edge tracking. We include visual examples and quantitative evaluations illustrating the benefits of our proposal." @default.
- W2023578721 created "2016-06-24" @default.
- W2023578721 creator A5008307290 @default.
- W2023578721 creator A5014127586 @default.
- W2023578721 creator A5018271540 @default.
- W2023578721 creator A5049375194 @default.
- W2023578721 creator A5056125713 @default.
- W2023578721 date "2013-05-01" @default.
- W2023578721 modified "2023-10-13" @default.
- W2023578721 title "Multiscale edge detection based on Gaussian smoothing and edge tracking" @default.
- W2023578721 cites W127809959 @default.
- W2023578721 cites W1495971627 @default.
- W2023578721 cites W1973976434 @default.
- W2023578721 cites W1977297987 @default.
- W2023578721 cites W1981020230 @default.
- W2023578721 cites W1982888072 @default.
- W2023578721 cites W1996070955 @default.
- W2023578721 cites W1997956943 @default.
- W2023578721 cites W2000709479 @default.
- W2023578721 cites W2002312729 @default.
- W2023578721 cites W2002476439 @default.
- W2023578721 cites W2010548775 @default.
- W2023578721 cites W2010814572 @default.
- W2023578721 cites W2012367070 @default.
- W2023578721 cites W2017072914 @default.
- W2023578721 cites W2025848441 @default.
- W2023578721 cites W2038608380 @default.
- W2023578721 cites W2039041067 @default.
- W2023578721 cites W2044397366 @default.
- W2023578721 cites W2046925174 @default.
- W2023578721 cites W2056011345 @default.
- W2023578721 cites W2058751655 @default.
- W2023578721 cites W2062432103 @default.
- W2023578721 cites W2062846327 @default.
- W2023578721 cites W2071690793 @default.
- W2023578721 cites W2074537354 @default.
- W2023578721 cites W2081534370 @default.
- W2023578721 cites W2085477622 @default.
- W2023578721 cites W2087517326 @default.
- W2023578721 cites W2099454382 @default.
- W2023578721 cites W2100987536 @default.
- W2023578721 cites W2104095591 @default.
- W2023578721 cites W2104564430 @default.
- W2023578721 cites W2105714141 @default.
- W2023578721 cites W2106097225 @default.
- W2023578721 cites W2110158442 @default.
- W2023578721 cites W2116040950 @default.
- W2023578721 cites W2116216752 @default.
- W2023578721 cites W2116609734 @default.
- W2023578721 cites W2119823327 @default.
- W2023578721 cites W2121653266 @default.
- W2023578721 cites W2124592837 @default.
- W2023578721 cites W2134215223 @default.
- W2023578721 cites W2141376824 @default.
- W2023578721 cites W2142440858 @default.
- W2023578721 cites W2144832785 @default.
- W2023578721 cites W2145023731 @default.
- W2023578721 cites W2145323086 @default.
- W2023578721 cites W2150134853 @default.
- W2023578721 cites W2152328854 @default.
- W2023578721 cites W2153394113 @default.
- W2023578721 cites W2153645845 @default.
- W2023578721 cites W2155487652 @default.
- W2023578721 cites W2156830547 @default.
- W2023578721 cites W2158184062 @default.
- W2023578721 cites W2158479283 @default.
- W2023578721 cites W2165633287 @default.
- W2023578721 cites W2167373005 @default.
- W2023578721 cites W2169272511 @default.
- W2023578721 cites W2171536163 @default.
- W2023578721 cites W2296297488 @default.
- W2023578721 doi "https://doi.org/10.1016/j.knosys.2013.01.026" @default.
- W2023578721 hasPublicationYear "2013" @default.
- W2023578721 type Work @default.
- W2023578721 sameAs 2023578721 @default.
- W2023578721 citedByCount "84" @default.
- W2023578721 countsByYear W20235787212013 @default.
- W2023578721 countsByYear W20235787212014 @default.
- W2023578721 countsByYear W20235787212015 @default.
- W2023578721 countsByYear W20235787212016 @default.
- W2023578721 countsByYear W20235787212017 @default.
- W2023578721 countsByYear W20235787212018 @default.
- W2023578721 countsByYear W20235787212019 @default.
- W2023578721 countsByYear W20235787212020 @default.
- W2023578721 countsByYear W20235787212021 @default.
- W2023578721 countsByYear W20235787212022 @default.
- W2023578721 countsByYear W20235787212023 @default.
- W2023578721 crossrefType "journal-article" @default.
- W2023578721 hasAuthorship W2023578721A5008307290 @default.
- W2023578721 hasAuthorship W2023578721A5014127586 @default.
- W2023578721 hasAuthorship W2023578721A5018271540 @default.
- W2023578721 hasAuthorship W2023578721A5049375194 @default.
- W2023578721 hasAuthorship W2023578721A5056125713 @default.
- W2023578721 hasConcept C104317376 @default.
- W2023578721 hasConcept C106430172 @default.
- W2023578721 hasConcept C115961682 @default.
- W2023578721 hasConcept C119857082 @default.
- W2023578721 hasConcept C121332964 @default.