Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023578872> ?p ?o ?g. }
- W2023578872 endingPage "792" @default.
- W2023578872 startingPage "783" @default.
- W2023578872 abstract "Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information on the oligomers formed by gas-phase polymerization can be obtained using the mass-selected ion mobility technique where the measured collision cross-sections of the selected oligomer ions and collision-induced dissociation can provide fairly accurate structural identifications. The identification of the structures of the dimers and trimers formed in the gas-phase thermal polymerization of styrene confirms that the polymerization proceeds according to the Mayo mechanism. Similarly, the ion mobility technique has been utilized to confirm the formation of benzene cations by intracluster polymerization following the ionization of acetylene clusters. Finally, it has been shown that polymerization of styrene vapor on the surface of activated nanoparticles can lead to the incorporation of a variety of metal and metal oxide nanoparticles within polystyrene films. The ability to probe the reactivity and structure of the small growing oligomers in the gas phase can provide fundamental insight into mechanisms of polymerization that are difficult to obtain from condensed-phase studies. These experiments are also important for understanding the growth mechanisms of complex organics in flames, combustion processes, interstellar clouds, and solar nebula where gas-phase reactions, cluster polymerization, and surface catalysis on dust nanoparticles represent the major synthetic pathways. This research can lead to the discovery of novel initiation mechanisms and reaction pathways with applications in the synthesis of oligomers and nanocomposites with unique and improved properties." @default.
- W2023578872 created "2016-06-24" @default.
- W2023578872 creator A5068222384 @default.
- W2023578872 date "2008-06-17" @default.
- W2023578872 modified "2023-09-27" @default.
- W2023578872 title "Polymerization in the Gas Phase, in Clusters, and on Nanoparticle Surfaces" @default.
- W2023578872 cites W1495482938 @default.
- W2023578872 cites W1632903569 @default.
- W2023578872 cites W1973268806 @default.
- W2023578872 cites W1973558017 @default.
- W2023578872 cites W1975012151 @default.
- W2023578872 cites W1981359887 @default.
- W2023578872 cites W1985841518 @default.
- W2023578872 cites W1986249738 @default.
- W2023578872 cites W1987092100 @default.
- W2023578872 cites W1988400041 @default.
- W2023578872 cites W1991810910 @default.
- W2023578872 cites W1995301102 @default.
- W2023578872 cites W1997840183 @default.
- W2023578872 cites W1998610472 @default.
- W2023578872 cites W2003610226 @default.
- W2023578872 cites W2004660021 @default.
- W2023578872 cites W2010271310 @default.
- W2023578872 cites W2014140929 @default.
- W2023578872 cites W2015260729 @default.
- W2023578872 cites W2017843260 @default.
- W2023578872 cites W2020082936 @default.
- W2023578872 cites W2021849231 @default.
- W2023578872 cites W2024014301 @default.
- W2023578872 cites W2028671570 @default.
- W2023578872 cites W2029192302 @default.
- W2023578872 cites W2030504010 @default.
- W2023578872 cites W2031640977 @default.
- W2023578872 cites W2032173720 @default.
- W2023578872 cites W2033809471 @default.
- W2023578872 cites W2034660988 @default.
- W2023578872 cites W2035780955 @default.
- W2023578872 cites W2036602617 @default.
- W2023578872 cites W2037396908 @default.
- W2023578872 cites W2037400936 @default.
- W2023578872 cites W2042834310 @default.
- W2023578872 cites W2045272846 @default.
- W2023578872 cites W2048900415 @default.
- W2023578872 cites W2052625343 @default.
- W2023578872 cites W2053597219 @default.
- W2023578872 cites W2058517069 @default.
- W2023578872 cites W2058725891 @default.
- W2023578872 cites W2059144382 @default.
- W2023578872 cites W2060647921 @default.
- W2023578872 cites W2061936099 @default.
- W2023578872 cites W2062799436 @default.
- W2023578872 cites W2063802546 @default.
- W2023578872 cites W2067867854 @default.
- W2023578872 cites W2069104186 @default.
- W2023578872 cites W2070376200 @default.
- W2023578872 cites W2075508765 @default.
- W2023578872 cites W2079305733 @default.
- W2023578872 cites W2088637012 @default.
- W2023578872 cites W2090180354 @default.
- W2023578872 cites W2092176122 @default.
- W2023578872 cites W2094258426 @default.
- W2023578872 cites W2105716234 @default.
- W2023578872 cites W2124816512 @default.
- W2023578872 cites W2135357420 @default.
- W2023578872 cites W2160182003 @default.
- W2023578872 cites W2168382336 @default.
- W2023578872 cites W2171531109 @default.
- W2023578872 cites W2324076384 @default.
- W2023578872 cites W2950729209 @default.
- W2023578872 cites W2950833569 @default.
- W2023578872 cites W2951088770 @default.
- W2023578872 cites W2977630482 @default.
- W2023578872 cites W3004813772 @default.
- W2023578872 cites W625995254 @default.
- W2023578872 cites W629975154 @default.
- W2023578872 doi "https://doi.org/10.1021/ar7001396" @default.
- W2023578872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18557636" @default.
- W2023578872 hasPublicationYear "2008" @default.
- W2023578872 type Work @default.
- W2023578872 sameAs 2023578872 @default.
- W2023578872 citedByCount "24" @default.
- W2023578872 countsByYear W20235788722012 @default.
- W2023578872 countsByYear W20235788722013 @default.
- W2023578872 countsByYear W20235788722014 @default.
- W2023578872 countsByYear W20235788722015 @default.
- W2023578872 countsByYear W20235788722016 @default.
- W2023578872 countsByYear W20235788722017 @default.
- W2023578872 countsByYear W20235788722020 @default.
- W2023578872 crossrefType "journal-article" @default.
- W2023578872 hasAuthorship W2023578872A5068222384 @default.
- W2023578872 hasConcept C111998727 @default.
- W2023578872 hasConcept C121120078 @default.
- W2023578872 hasConcept C159467904 @default.
- W2023578872 hasConcept C166940927 @default.
- W2023578872 hasConcept C167076587 @default.
- W2023578872 hasConcept C16728422 @default.
- W2023578872 hasConcept C178790620 @default.
- W2023578872 hasConcept C183882617 @default.