Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023583606> ?p ?o ?g. }
- W2023583606 endingPage "33" @default.
- W2023583606 startingPage "22" @default.
- W2023583606 abstract "Abstract Tikhonov regularization (TR) is an approach to form a multivariate calibration model for y = Xb . It includes a regulation operator matrix L that is usually set to the identity matrix I and in this situation, TR is said to operate in standard form and is the same as ridge regression (RR). Alternatively, TR can function in general form with L ≠ I where L is used to remove unwanted spectral artifacts. To simplify the computations for TR in general form, a standardization process can be used on X and y to transform the problem into TR in standard form and a RR algorithm can now be used. The calculated regression vector in standardized space must be back‐transformed to the general form which can now be applied to spectra that have not been standardized. The calibration model building methods of principal component regression (PCR), partial least squares (PLS) and others can also be implemented with the standardized X and y . Regardless of the calibration method, armed with y , X and L , a regression vector is sought that can correct for irrelevant spectral variation in predicting y . In this study, L is set to various derivative operators to obtain smoothed TR, PCR and PLS regression vectors in order to generate models robust to noise and/or temperature effects. Results of this smoothing process are examined for spectral data without excessive noise or other artifacts, spectral data with additional noise added and spectral data exhibiting temperature‐induced peak shifts. When the noise level is small, derivative operator smoothing was found to slightly degrade the root mean square error of validation (RMSEV) as well as the prediction variance indicator represented by the regression vector 2‐norm $left| {{rm hat b}} right|_2$ thereby deteriorating the model harmony (bias/variance tradeoff). The effective rank (ER) (parsimony) was found to decrease with smoothing and in doing so; a harmony/parsimony tradeoff is formed. For the temperature‐affected data and some of the noisy data, derivative operator smoothing decreases the RMSEV, but at a cost of greater values for $left| {{rm hat b}} right|_2$ . The ER was found to increase and hence, the parsimony degraded. A simulated data set from a previous study that used TR in general form was reexamined. In the present study, the standardization process is used with L set to the spectral noise structure to eliminate undesirable spectral regions (wavelength selection) and TR, PCR and PLS are evaluated. There was a significant decrease in bias at a sacrifice to variance with wavelength selection and the parsimony essentially remains the same. This paper includes discussion on the utility of using TR to remove other undesired spectral patterns resulting from chemical, environmental and/or instrumental influences. The discussion also incorporates using TR as a method for calibration transfer. Copyright © 2006 John Wiley & Sons, Ltd." @default.
- W2023583606 created "2016-06-24" @default.
- W2023583606 creator A5005437329 @default.
- W2023583606 creator A5030747195 @default.
- W2023583606 date "2006-01-01" @default.
- W2023583606 modified "2023-10-16" @default.
- W2023583606 title "Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts" @default.
- W2023583606 cites W1594234351 @default.
- W2023583606 cites W1967542684 @default.
- W2023583606 cites W1971801840 @default.
- W2023583606 cites W1973815969 @default.
- W2023583606 cites W1977097146 @default.
- W2023583606 cites W1978337258 @default.
- W2023583606 cites W1980345436 @default.
- W2023583606 cites W1981125720 @default.
- W2023583606 cites W2007238390 @default.
- W2023583606 cites W2022449465 @default.
- W2023583606 cites W2022644738 @default.
- W2023583606 cites W2025638503 @default.
- W2023583606 cites W2027505483 @default.
- W2023583606 cites W2033242948 @default.
- W2023583606 cites W2033872649 @default.
- W2023583606 cites W2044224175 @default.
- W2023583606 cites W2044274869 @default.
- W2023583606 cites W2045596450 @default.
- W2023583606 cites W2046926863 @default.
- W2023583606 cites W2047227305 @default.
- W2023583606 cites W2055817716 @default.
- W2023583606 cites W2056505218 @default.
- W2023583606 cites W2057332175 @default.
- W2023583606 cites W2062243225 @default.
- W2023583606 cites W2066553694 @default.
- W2023583606 cites W2079456977 @default.
- W2023583606 cites W2094475447 @default.
- W2023583606 cites W2123126616 @default.
- W2023583606 cites W2130560001 @default.
- W2023583606 cites W2332500232 @default.
- W2023583606 cites W2511716438 @default.
- W2023583606 cites W4233774682 @default.
- W2023583606 cites W4237415315 @default.
- W2023583606 cites W4240600161 @default.
- W2023583606 doi "https://doi.org/10.1002/cem.975" @default.
- W2023583606 hasPublicationYear "2006" @default.
- W2023583606 type Work @default.
- W2023583606 sameAs 2023583606 @default.
- W2023583606 citedByCount "30" @default.
- W2023583606 countsByYear W20235836062012 @default.
- W2023583606 countsByYear W20235836062013 @default.
- W2023583606 countsByYear W20235836062014 @default.
- W2023583606 countsByYear W20235836062015 @default.
- W2023583606 countsByYear W20235836062016 @default.
- W2023583606 countsByYear W20235836062017 @default.
- W2023583606 countsByYear W20235836062018 @default.
- W2023583606 countsByYear W20235836062019 @default.
- W2023583606 countsByYear W20235836062020 @default.
- W2023583606 countsByYear W20235836062022 @default.
- W2023583606 crossrefType "journal-article" @default.
- W2023583606 hasAuthorship W2023583606A5005437329 @default.
- W2023583606 hasAuthorship W2023583606A5030747195 @default.
- W2023583606 hasBestOaLocation W20235836061 @default.
- W2023583606 hasConcept C105795698 @default.
- W2023583606 hasConcept C11413529 @default.
- W2023583606 hasConcept C115961682 @default.
- W2023583606 hasConcept C134306372 @default.
- W2023583606 hasConcept C135252773 @default.
- W2023583606 hasConcept C152442038 @default.
- W2023583606 hasConcept C154945302 @default.
- W2023583606 hasConcept C165838908 @default.
- W2023583606 hasConcept C22354355 @default.
- W2023583606 hasConcept C27438332 @default.
- W2023583606 hasConcept C2776135515 @default.
- W2023583606 hasConcept C28826006 @default.
- W2023583606 hasConcept C33923547 @default.
- W2023583606 hasConcept C3770464 @default.
- W2023583606 hasConcept C41008148 @default.
- W2023583606 hasConcept C74887250 @default.
- W2023583606 hasConcept C99498987 @default.
- W2023583606 hasConceptScore W2023583606C105795698 @default.
- W2023583606 hasConceptScore W2023583606C11413529 @default.
- W2023583606 hasConceptScore W2023583606C115961682 @default.
- W2023583606 hasConceptScore W2023583606C134306372 @default.
- W2023583606 hasConceptScore W2023583606C135252773 @default.
- W2023583606 hasConceptScore W2023583606C152442038 @default.
- W2023583606 hasConceptScore W2023583606C154945302 @default.
- W2023583606 hasConceptScore W2023583606C165838908 @default.
- W2023583606 hasConceptScore W2023583606C22354355 @default.
- W2023583606 hasConceptScore W2023583606C27438332 @default.
- W2023583606 hasConceptScore W2023583606C2776135515 @default.
- W2023583606 hasConceptScore W2023583606C28826006 @default.
- W2023583606 hasConceptScore W2023583606C33923547 @default.
- W2023583606 hasConceptScore W2023583606C3770464 @default.
- W2023583606 hasConceptScore W2023583606C41008148 @default.
- W2023583606 hasConceptScore W2023583606C74887250 @default.
- W2023583606 hasConceptScore W2023583606C99498987 @default.
- W2023583606 hasIssue "1-2" @default.
- W2023583606 hasLocation W20235836061 @default.
- W2023583606 hasOpenAccess W2023583606 @default.
- W2023583606 hasPrimaryLocation W20235836061 @default.