Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023591337> ?p ?o ?g. }
- W2023591337 endingPage "1709" @default.
- W2023591337 startingPage "1696" @default.
- W2023591337 abstract "Several gradient-based approaches such as back propagation (BP) and Levenberg Marquardt (LM) methods have been developed for training the neural network (NN) based systems. But, for multimodal cost functions these procedures may lead to local minima, therefore, the evolutionary algorithms (EAs) based procedures are considered as promising alternatives. In this paper we focus on a memetic algorithm based approach for training the multilayer perceptron NN applied to nonlinear system identification. The proposed memetic algorithm is an alternative to gradient search methods, such as back-propagation and back-propagation with momentum which has inherent limitations of many local optima. Here we have proposed the identification of a nonlinear system using memetic differential evolution (DE) algorithm and compared the results with other six algorithms such as Back-propagation (BP), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm Back-propagation (GABP), Particle Swarm Optimization combined with Back-propagation (PSOBP). In the proposed system identification scheme, we have exploited DE to be hybridized with the back propagation algorithm, i.e. differential evolution back-propagation (DEBP) where the local search BP algorithm is used as an operator to DE. These algorithms have been tested on a standard benchmark problem for nonlinear system identification to prove their efficacy. First examples shows the comparison of different algorithms which proves that the proposed DEBP is having better identification capability in comparison to other. In example 2 good behavior of the identification method is tested on an one degree of freedom (1DOF) experimental aerodynamic test rig, a twin rotor multi-input–multi-output system (TRMS), finally it is applied to Box and Jenkins Gas furnace benchmark identification problem and its efficacy has been tested through correlation analysis." @default.
- W2023591337 created "2016-06-24" @default.
- W2023591337 creator A5003720673 @default.
- W2023591337 creator A5074645155 @default.
- W2023591337 date "2011-05-01" @default.
- W2023591337 modified "2023-09-25" @default.
- W2023591337 title "Nonlinear system identification using memetic differential evolution trained neural networks" @default.
- W2023591337 cites W1490180010 @default.
- W2023591337 cites W1504962226 @default.
- W2023591337 cites W1519139529 @default.
- W2023591337 cites W1595159159 @default.
- W2023591337 cites W1733124435 @default.
- W2023591337 cites W1986477256 @default.
- W2023591337 cites W2000307746 @default.
- W2023591337 cites W2002252288 @default.
- W2023591337 cites W2007076446 @default.
- W2023591337 cites W2015801280 @default.
- W2023591337 cites W2019957060 @default.
- W2023591337 cites W2092192451 @default.
- W2023591337 cites W2125332715 @default.
- W2023591337 cites W2131480237 @default.
- W2023591337 cites W2138484437 @default.
- W2023591337 cites W2138810473 @default.
- W2023591337 cites W2145795099 @default.
- W2023591337 cites W2156194072 @default.
- W2023591337 cites W2160548572 @default.
- W2023591337 cites W2163845190 @default.
- W2023591337 cites W2166513470 @default.
- W2023591337 cites W2169143828 @default.
- W2023591337 doi "https://doi.org/10.1016/j.neucom.2011.02.006" @default.
- W2023591337 hasPublicationYear "2011" @default.
- W2023591337 type Work @default.
- W2023591337 sameAs 2023591337 @default.
- W2023591337 citedByCount "48" @default.
- W2023591337 countsByYear W20235913372012 @default.
- W2023591337 countsByYear W20235913372013 @default.
- W2023591337 countsByYear W20235913372014 @default.
- W2023591337 countsByYear W20235913372015 @default.
- W2023591337 countsByYear W20235913372016 @default.
- W2023591337 countsByYear W20235913372017 @default.
- W2023591337 countsByYear W20235913372018 @default.
- W2023591337 countsByYear W20235913372019 @default.
- W2023591337 countsByYear W20235913372020 @default.
- W2023591337 countsByYear W20235913372021 @default.
- W2023591337 countsByYear W20235913372022 @default.
- W2023591337 countsByYear W20235913372023 @default.
- W2023591337 crossrefType "journal-article" @default.
- W2023591337 hasAuthorship W2023591337A5003720673 @default.
- W2023591337 hasAuthorship W2023591337A5074645155 @default.
- W2023591337 hasConcept C11413529 @default.
- W2023591337 hasConcept C121332964 @default.
- W2023591337 hasConcept C126255220 @default.
- W2023591337 hasConcept C13280743 @default.
- W2023591337 hasConcept C134306372 @default.
- W2023591337 hasConcept C135320971 @default.
- W2023591337 hasConcept C154945302 @default.
- W2023591337 hasConcept C155032097 @default.
- W2023591337 hasConcept C158622935 @default.
- W2023591337 hasConcept C159149176 @default.
- W2023591337 hasConcept C185798385 @default.
- W2023591337 hasConcept C186633575 @default.
- W2023591337 hasConcept C205649164 @default.
- W2023591337 hasConcept C33923547 @default.
- W2023591337 hasConcept C35129592 @default.
- W2023591337 hasConcept C41008148 @default.
- W2023591337 hasConcept C50644808 @default.
- W2023591337 hasConcept C62520636 @default.
- W2023591337 hasConcept C74750220 @default.
- W2023591337 hasConcept C85617194 @default.
- W2023591337 hasConceptScore W2023591337C11413529 @default.
- W2023591337 hasConceptScore W2023591337C121332964 @default.
- W2023591337 hasConceptScore W2023591337C126255220 @default.
- W2023591337 hasConceptScore W2023591337C13280743 @default.
- W2023591337 hasConceptScore W2023591337C134306372 @default.
- W2023591337 hasConceptScore W2023591337C135320971 @default.
- W2023591337 hasConceptScore W2023591337C154945302 @default.
- W2023591337 hasConceptScore W2023591337C155032097 @default.
- W2023591337 hasConceptScore W2023591337C158622935 @default.
- W2023591337 hasConceptScore W2023591337C159149176 @default.
- W2023591337 hasConceptScore W2023591337C185798385 @default.
- W2023591337 hasConceptScore W2023591337C186633575 @default.
- W2023591337 hasConceptScore W2023591337C205649164 @default.
- W2023591337 hasConceptScore W2023591337C33923547 @default.
- W2023591337 hasConceptScore W2023591337C35129592 @default.
- W2023591337 hasConceptScore W2023591337C41008148 @default.
- W2023591337 hasConceptScore W2023591337C50644808 @default.
- W2023591337 hasConceptScore W2023591337C62520636 @default.
- W2023591337 hasConceptScore W2023591337C74750220 @default.
- W2023591337 hasConceptScore W2023591337C85617194 @default.
- W2023591337 hasIssue "10" @default.
- W2023591337 hasLocation W20235913371 @default.
- W2023591337 hasOpenAccess W2023591337 @default.
- W2023591337 hasPrimaryLocation W20235913371 @default.
- W2023591337 hasRelatedWork W1970858426 @default.
- W2023591337 hasRelatedWork W1976928428 @default.
- W2023591337 hasRelatedWork W2001946563 @default.
- W2023591337 hasRelatedWork W2049779581 @default.
- W2023591337 hasRelatedWork W2064582129 @default.