Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023608319> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2023608319 endingPage "3459" @default.
- W2023608319 startingPage "3452" @default.
- W2023608319 abstract "Wireless sensor networks can be used in various fields, e.g., military and civil applications. The technique of saving energy to prolong the life of sensor nodes is one of main challenges to resource-constrained sensor networks. Therefore, in-network aggregation of data has been proposed in resource-constrained environments for energy efficiency. Most previous works on in-network aggregation only support a one-dimensional data (e.g., MIN and MAX). To support a multi-dimensional data, the skyline query is used. The skyline query returns a set of points that are not dominated by any other point on all dimensions. The majority of previous skyline query processing methods (e.g., BNL and BBS) work on centralized storage. Centralized query processing methods do not have merits in terms of energy efficiency in high event rate environments. In this paper, we propose new algorithm of in-network processing for the skyline queries. The proposed algorithm reduces the communication cost and evenly distributes load. The experimental results show the advantages of our algorithm over in-network aggregation in terms of improving energy efficiency." @default.
- W2023608319 created "2016-06-24" @default.
- W2023608319 creator A5027969048 @default.
- W2023608319 creator A5057134120 @default.
- W2023608319 creator A5060644906 @default.
- W2023608319 creator A5077861192 @default.
- W2023608319 date "2007-12-01" @default.
- W2023608319 modified "2023-09-25" @default.
- W2023608319 title "In-Network Processing for Skyline Queries in Sensor Networks" @default.
- W2023608319 doi "https://doi.org/10.1093/ietcom/e90-b.12.3452" @default.
- W2023608319 hasPublicationYear "2007" @default.
- W2023608319 type Work @default.
- W2023608319 sameAs 2023608319 @default.
- W2023608319 citedByCount "20" @default.
- W2023608319 countsByYear W20236083192012 @default.
- W2023608319 countsByYear W20236083192013 @default.
- W2023608319 countsByYear W20236083192014 @default.
- W2023608319 countsByYear W20236083192015 @default.
- W2023608319 countsByYear W20236083192016 @default.
- W2023608319 countsByYear W20236083192017 @default.
- W2023608319 crossrefType "journal-article" @default.
- W2023608319 hasAuthorship W2023608319A5027969048 @default.
- W2023608319 hasAuthorship W2023608319A5057134120 @default.
- W2023608319 hasAuthorship W2023608319A5060644906 @default.
- W2023608319 hasAuthorship W2023608319A5077861192 @default.
- W2023608319 hasConcept C124101348 @default.
- W2023608319 hasConcept C2780757406 @default.
- W2023608319 hasConcept C31258907 @default.
- W2023608319 hasConcept C41008148 @default.
- W2023608319 hasConceptScore W2023608319C124101348 @default.
- W2023608319 hasConceptScore W2023608319C2780757406 @default.
- W2023608319 hasConceptScore W2023608319C31258907 @default.
- W2023608319 hasConceptScore W2023608319C41008148 @default.
- W2023608319 hasIssue "12" @default.
- W2023608319 hasLocation W20236083191 @default.
- W2023608319 hasOpenAccess W2023608319 @default.
- W2023608319 hasPrimaryLocation W20236083191 @default.
- W2023608319 hasRelatedWork W1580212682 @default.
- W2023608319 hasRelatedWork W2065676484 @default.
- W2023608319 hasRelatedWork W2331653917 @default.
- W2023608319 hasRelatedWork W2331788134 @default.
- W2023608319 hasRelatedWork W2727889391 @default.
- W2023608319 hasRelatedWork W2789491300 @default.
- W2023608319 hasRelatedWork W2896609224 @default.
- W2023608319 hasRelatedWork W2905458094 @default.
- W2023608319 hasRelatedWork W3009147976 @default.
- W2023608319 hasRelatedWork W4311154768 @default.
- W2023608319 hasVolume "E90-B" @default.
- W2023608319 isParatext "false" @default.
- W2023608319 isRetracted "false" @default.
- W2023608319 magId "2023608319" @default.
- W2023608319 workType "article" @default.