Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023652180> ?p ?o ?g. }
- W2023652180 endingPage "5279" @default.
- W2023652180 startingPage "5259" @default.
- W2023652180 abstract "This study presents lithium (Li) and magnesium (Mg) isotope data from experiments designed to assess the effects of dissolution of primary phases and the formation of secondary minerals during the weathering of basalt. Basalt glass and olivine dissolution experiments were performed in mixed through-flow reactors under controlled equilibrium conditions, at low pH (2–4) in order to keep solutions undersaturated (i.e. far-from equilibrium) and inhibit the formation of secondary minerals. Combined dissolution–precipitation experiments were performed at high pH (10 and 11) increasing the saturation state of the solutions (moving the system closer to equilibrium) and thereby promoting the formation of secondary minerals. At conditions far from equilibrium saturation state modelling and solution stoichiometry suggest that little secondary mineral formation has occurred. This is supported by the similarity of the dissolution rates of basalt glass and olivine obtained here compared to those of previous experiments. The δ7Li isotope composition of the experimental solution is indistinguishable from that of the initial basalt glass or olivine indicating that little fractionation has occurred. In contrast, the same experimental solutions have light Mg isotope compositions relative to the primary phases, and the solution becomes progressively lighter with time. In the absence of any evidence for secondary mineral formation the most likely explanation for these light Mg isotope compositions is that there has been preferential loss of light Mg during primary phase dissolution. For the experiments undertaken at close to equilibrium conditions the results of saturation state modelling and changes in solution chemistry suggest that secondary mineral formation has occurred. X-ray diffraction (XRD) measurements of the reacted mineral products from these experiments confirm that the principal secondary phase that has formed is chrysotile. Lithium isotope ratios of the experimental fluid become increasingly heavy with time, consistent with previous experimental work and natural data indicating that 6Li is preferentially incorporated into secondary minerals, leaving the solution enriched in 7Li. The behaviour of Mg isotopes is different from that anticipated or observed in natural systems. Similar to the far from equilibrium experiments initially light Mg is lost during olivine dissolution, but with time the δ26Mg value of the solution becomes increasingly heavy. This suggests either preferential loss of light, and then heavy Mg from olivine, or that the secondary phase preferentially incorporates light Mg from solution. Assuming that the secondary phase is chrysotile, a Mg-silicate, the sense of Mg fractionation is opposite to that previously associated with silicate soils and implies that the fractionation of Mg isotopes during silicate precipitation may be mineral specific. If secondary silicates do preferentially remove light Mg from solution then this could be a possible mechanism for the relatively heavy δ26Mg value of seawater. This study highlights the utility of experimental studies to quantify the effects of natural weathering reactions on the Li and Mg geochemical cycles." @default.
- W2023652180 created "2016-06-24" @default.
- W2023652180 creator A5001754345 @default.
- W2023652180 creator A5026636409 @default.
- W2023652180 creator A5055588194 @default.
- W2023652180 creator A5063694053 @default.
- W2023652180 creator A5070376178 @default.
- W2023652180 creator A5075056484 @default.
- W2023652180 date "2010-09-01" @default.
- W2023652180 modified "2023-10-09" @default.
- W2023652180 title "The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt" @default.
- W2023652180 cites W1526123557 @default.
- W2023652180 cites W160594082 @default.
- W2023652180 cites W168614109 @default.
- W2023652180 cites W1965499764 @default.
- W2023652180 cites W1966360142 @default.
- W2023652180 cites W1967244792 @default.
- W2023652180 cites W1968019859 @default.
- W2023652180 cites W1968545963 @default.
- W2023652180 cites W1969564410 @default.
- W2023652180 cites W1971008779 @default.
- W2023652180 cites W1972595903 @default.
- W2023652180 cites W1972673094 @default.
- W2023652180 cites W1974774627 @default.
- W2023652180 cites W1975452494 @default.
- W2023652180 cites W1975951422 @default.
- W2023652180 cites W1977473587 @default.
- W2023652180 cites W1980728284 @default.
- W2023652180 cites W1986619898 @default.
- W2023652180 cites W1988032601 @default.
- W2023652180 cites W1989167434 @default.
- W2023652180 cites W1991442438 @default.
- W2023652180 cites W1993209602 @default.
- W2023652180 cites W1994431961 @default.
- W2023652180 cites W1998096686 @default.
- W2023652180 cites W1998837657 @default.
- W2023652180 cites W1999827695 @default.
- W2023652180 cites W2002673413 @default.
- W2023652180 cites W2004640471 @default.
- W2023652180 cites W2005024333 @default.
- W2023652180 cites W2005682964 @default.
- W2023652180 cites W2007248477 @default.
- W2023652180 cites W2010637391 @default.
- W2023652180 cites W2010707490 @default.
- W2023652180 cites W2011172116 @default.
- W2023652180 cites W2011254969 @default.
- W2023652180 cites W2011965212 @default.
- W2023652180 cites W2012062341 @default.
- W2023652180 cites W2012183198 @default.
- W2023652180 cites W2014392338 @default.
- W2023652180 cites W2016273341 @default.
- W2023652180 cites W2019280578 @default.
- W2023652180 cites W2024693414 @default.
- W2023652180 cites W2024726804 @default.
- W2023652180 cites W2027738471 @default.
- W2023652180 cites W2028243759 @default.
- W2023652180 cites W2034601870 @default.
- W2023652180 cites W2035770736 @default.
- W2023652180 cites W2037134409 @default.
- W2023652180 cites W2037903089 @default.
- W2023652180 cites W2039267953 @default.
- W2023652180 cites W2043689993 @default.
- W2023652180 cites W2046414884 @default.
- W2023652180 cites W2048100088 @default.
- W2023652180 cites W2048695875 @default.
- W2023652180 cites W2050548480 @default.
- W2023652180 cites W2055282179 @default.
- W2023652180 cites W2056035247 @default.
- W2023652180 cites W2060349907 @default.
- W2023652180 cites W2063284623 @default.
- W2023652180 cites W2063322620 @default.
- W2023652180 cites W2066964298 @default.
- W2023652180 cites W2068847570 @default.
- W2023652180 cites W2070666153 @default.
- W2023652180 cites W2072836657 @default.
- W2023652180 cites W2082940394 @default.
- W2023652180 cites W2084280680 @default.
- W2023652180 cites W2084825481 @default.
- W2023652180 cites W2097828895 @default.
- W2023652180 cites W2119818932 @default.
- W2023652180 cites W2120129851 @default.
- W2023652180 cites W2136863770 @default.
- W2023652180 cites W2141014038 @default.
- W2023652180 cites W2142681232 @default.
- W2023652180 cites W2143262029 @default.
- W2023652180 cites W2157677644 @default.
- W2023652180 cites W2159767575 @default.
- W2023652180 cites W2324175459 @default.
- W2023652180 cites W2331820982 @default.
- W2023652180 cites W2462377297 @default.
- W2023652180 cites W4239817473 @default.
- W2023652180 doi "https://doi.org/10.1016/j.gca.2010.06.028" @default.
- W2023652180 hasPublicationYear "2010" @default.
- W2023652180 type Work @default.
- W2023652180 sameAs 2023652180 @default.
- W2023652180 citedByCount "200" @default.
- W2023652180 countsByYear W20236521802012 @default.
- W2023652180 countsByYear W20236521802013 @default.