Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023652218> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2023652218 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Algorithmic Lower Bounds for Problems Parameterized by Clique-widthFedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket SaurabhFedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabhpp.493 - 502Chapter DOI:https://doi.org/10.1137/1.9781611973075.42PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Many NP-hard problems can be solved efficiently when the input is restricted to graphs of bounded tree-width or clique-width. In particular, by the celebrated result of Courcelle, every decision problem expressible in monadic second order logic is fixed parameter tractable when parameterized by the tree-width of the input graph. On the other hand if we restrict ourselves to graphs of clique-width at most t, then there are many natural problems for which the running time of the best known algorithms is of the form nf(t), where n is the input length and f is some function. It was an open question whether natural problems like Graph Coloring, Max-Cut, Edge Dominating Set, and Hamiltonian Path are fixed parameter tractable when parameterized by the clique-width of the input graph. As a first step toward obtaining lower bounds for clique-width parameterizations, in [SODA 2009], we showed that unless FPT≠W[1], there is no algorithm with run time O(g(t) · nc), for some function g and a constant c not depending on t, for Graph Coloring, Edge Dominating Set and Hamiltonian Path. But the lower bounds obtained in [SODA 2009] are weak when compared to the upper bounds on the time complexity of the known algorithms for these problems when parameterized by the clique-width. In this paper, we obtain the asymptotically tight bounds for Max-Cut and Edge Dominating Set by showing that both problems cannot be solved in time f(t)no(t), unless Exponential Time Hypothesis (ETH) collapses; and can be solved in time nO(t), where f is an arbitrary function of t, on input of size n and clique-width at most t. We obtain our lower bounds by giving non-trivial structure-preserving “linear FPT reductions”. Previous chapter Next chapter RelatedDetails Published:2010ISBN:978-0-89871-701-3eISBN:978-1-61197-307-5 https://doi.org/10.1137/1.9781611973075Book Series Name:ProceedingsBook Code:PR135Book Pages:xviii + 1667" @default.
- W2023652218 created "2016-06-24" @default.
- W2023652218 creator A5015806060 @default.
- W2023652218 creator A5038531405 @default.
- W2023652218 creator A5051709720 @default.
- W2023652218 creator A5075328697 @default.
- W2023652218 date "2010-01-17" @default.
- W2023652218 modified "2023-09-23" @default.
- W2023652218 title "Algorithmic Lower Bounds for Problems Parameterized by Clique-width" @default.
- W2023652218 cites W1519147138 @default.
- W2023652218 cites W1524888420 @default.
- W2023652218 cites W1546876109 @default.
- W2023652218 cites W1606469315 @default.
- W2023652218 cites W1799657476 @default.
- W2023652218 cites W1993328543 @default.
- W2023652218 cites W1995725694 @default.
- W2023652218 cites W2008361472 @default.
- W2023652218 cites W2019673912 @default.
- W2023652218 cites W2035344492 @default.
- W2023652218 cites W2043791970 @default.
- W2023652218 cites W2053991811 @default.
- W2023652218 cites W2063951771 @default.
- W2023652218 cites W2073638763 @default.
- W2023652218 cites W2913688336 @default.
- W2023652218 cites W3021394452 @default.
- W2023652218 cites W3140964092 @default.
- W2023652218 cites W36639738 @default.
- W2023652218 cites W97328970 @default.
- W2023652218 doi "https://doi.org/10.1137/1.9781611973075.42" @default.
- W2023652218 hasPublicationYear "2010" @default.
- W2023652218 type Work @default.
- W2023652218 sameAs 2023652218 @default.
- W2023652218 citedByCount "27" @default.
- W2023652218 countsByYear W20236522182012 @default.
- W2023652218 countsByYear W20236522182013 @default.
- W2023652218 countsByYear W20236522182014 @default.
- W2023652218 countsByYear W20236522182015 @default.
- W2023652218 countsByYear W20236522182017 @default.
- W2023652218 countsByYear W20236522182018 @default.
- W2023652218 countsByYear W20236522182021 @default.
- W2023652218 countsByYear W20236522182022 @default.
- W2023652218 crossrefType "proceedings-article" @default.
- W2023652218 hasAuthorship W2023652218A5015806060 @default.
- W2023652218 hasAuthorship W2023652218A5038531405 @default.
- W2023652218 hasAuthorship W2023652218A5051709720 @default.
- W2023652218 hasAuthorship W2023652218A5075328697 @default.
- W2023652218 hasBestOaLocation W20236522182 @default.
- W2023652218 hasConcept C114614502 @default.
- W2023652218 hasConcept C118615104 @default.
- W2023652218 hasConcept C132525143 @default.
- W2023652218 hasConcept C132569581 @default.
- W2023652218 hasConcept C134306372 @default.
- W2023652218 hasConcept C165464430 @default.
- W2023652218 hasConcept C203776342 @default.
- W2023652218 hasConcept C22149727 @default.
- W2023652218 hasConcept C2777035058 @default.
- W2023652218 hasConcept C311688 @default.
- W2023652218 hasConcept C33923547 @default.
- W2023652218 hasConcept C34388435 @default.
- W2023652218 hasConcept C43517604 @default.
- W2023652218 hasConcept C5737132 @default.
- W2023652218 hasConcept C77553402 @default.
- W2023652218 hasConcept C86524685 @default.
- W2023652218 hasConceptScore W2023652218C114614502 @default.
- W2023652218 hasConceptScore W2023652218C118615104 @default.
- W2023652218 hasConceptScore W2023652218C132525143 @default.
- W2023652218 hasConceptScore W2023652218C132569581 @default.
- W2023652218 hasConceptScore W2023652218C134306372 @default.
- W2023652218 hasConceptScore W2023652218C165464430 @default.
- W2023652218 hasConceptScore W2023652218C203776342 @default.
- W2023652218 hasConceptScore W2023652218C22149727 @default.
- W2023652218 hasConceptScore W2023652218C2777035058 @default.
- W2023652218 hasConceptScore W2023652218C311688 @default.
- W2023652218 hasConceptScore W2023652218C33923547 @default.
- W2023652218 hasConceptScore W2023652218C34388435 @default.
- W2023652218 hasConceptScore W2023652218C43517604 @default.
- W2023652218 hasConceptScore W2023652218C5737132 @default.
- W2023652218 hasConceptScore W2023652218C77553402 @default.
- W2023652218 hasConceptScore W2023652218C86524685 @default.
- W2023652218 hasLocation W20236522181 @default.
- W2023652218 hasLocation W20236522182 @default.
- W2023652218 hasOpenAccess W2023652218 @default.
- W2023652218 hasPrimaryLocation W20236522181 @default.
- W2023652218 hasRelatedWork W1523717587 @default.
- W2023652218 hasRelatedWork W1569731655 @default.
- W2023652218 hasRelatedWork W1599634910 @default.
- W2023652218 hasRelatedWork W1979545228 @default.
- W2023652218 hasRelatedWork W2023652218 @default.
- W2023652218 hasRelatedWork W2143043241 @default.
- W2023652218 hasRelatedWork W2585972132 @default.
- W2023652218 hasRelatedWork W2953105197 @default.
- W2023652218 hasRelatedWork W3105392741 @default.
- W2023652218 hasRelatedWork W4240084004 @default.
- W2023652218 isParatext "false" @default.
- W2023652218 isRetracted "false" @default.
- W2023652218 magId "2023652218" @default.
- W2023652218 workType "article" @default.