Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023687724> ?p ?o ?g. }
- W2023687724 endingPage "205" @default.
- W2023687724 startingPage "188" @default.
- W2023687724 abstract "When statistical analyses of land use drivers are performed, they rarely deal explicitly with spatial autocorrelation. Most studies are undertaken on autocorrelation-free data samples. By doing this, a great deal of information that is present in the dataset is lost. This paper presents a spatially explicit, cross-sectional analysis of land use drivers in Belgium. It is shown that purely regressive logistic models only identify trends or global relationships between socio-economic or physico-climatic drivers and the precise location of each land use type. However, when the goal of a study is to obtain the best statistical model fit of land use distribution, a purely autoregressive model is appropriate. It is shown that this type of model deals appropriately with spatial autocorrelation as measured by the lack of autocorrelation in the deviance residuals of the model. More specifically, three types of autoregressive models are compared: (1) a set of binomial logistic regression models (one for each modelled land use) accounting only for the proportion of the modelled land use within the neighbourhood of a cell; (2) a multinomial autologistic regression that accounts for the composition of a cell’s neighbourhood; and (3) a state-of-the-art Bayesian Maximum Entropy (BME) based model that accounts fully for the spatial organization of the land uses within the neighbourhood of a cell. The comparative analysis shows that the BME approach has no advantages over the other methods, for our specific application, but that accounting for the composition of a cell’s neighbourhood is essential in obtaining an optimal fit." @default.
- W2023687724 created "2016-06-24" @default.
- W2023687724 creator A5030540605 @default.
- W2023687724 creator A5069181601 @default.
- W2023687724 creator A5076408429 @default.
- W2023687724 date "2007-03-01" @default.
- W2023687724 modified "2023-10-02" @default.
- W2023687724 title "Spatial analysis and modelling of land use distributions in Belgium" @default.
- W2023687724 cites W1517763382 @default.
- W2023687724 cites W1580389649 @default.
- W2023687724 cites W1731123982 @default.
- W2023687724 cites W1965777797 @default.
- W2023687724 cites W1971170521 @default.
- W2023687724 cites W1979261208 @default.
- W2023687724 cites W1979703545 @default.
- W2023687724 cites W1983835937 @default.
- W2023687724 cites W2003020261 @default.
- W2023687724 cites W2025406778 @default.
- W2023687724 cites W2030787349 @default.
- W2023687724 cites W2040353834 @default.
- W2023687724 cites W2042289381 @default.
- W2023687724 cites W2047120335 @default.
- W2023687724 cites W2050142151 @default.
- W2023687724 cites W2051512952 @default.
- W2023687724 cites W2051703320 @default.
- W2023687724 cites W2052152871 @default.
- W2023687724 cites W2054475479 @default.
- W2023687724 cites W2061808408 @default.
- W2023687724 cites W2064045645 @default.
- W2023687724 cites W2065577961 @default.
- W2023687724 cites W2069809422 @default.
- W2023687724 cites W2071031345 @default.
- W2023687724 cites W2089892649 @default.
- W2023687724 cites W2097823541 @default.
- W2023687724 cites W2099054202 @default.
- W2023687724 cites W2106974739 @default.
- W2023687724 cites W2107300678 @default.
- W2023687724 cites W2110608012 @default.
- W2023687724 cites W2110708190 @default.
- W2023687724 cites W2119143935 @default.
- W2023687724 cites W2123435199 @default.
- W2023687724 cites W2138730910 @default.
- W2023687724 cites W2139583397 @default.
- W2023687724 cites W2147187983 @default.
- W2023687724 cites W3121519629 @default.
- W2023687724 cites W4253562857 @default.
- W2023687724 cites W4256053265 @default.
- W2023687724 cites W601799929 @default.
- W2023687724 doi "https://doi.org/10.1016/j.compenvurbsys.2006.06.004" @default.
- W2023687724 hasPublicationYear "2007" @default.
- W2023687724 type Work @default.
- W2023687724 sameAs 2023687724 @default.
- W2023687724 citedByCount "91" @default.
- W2023687724 countsByYear W20236877242012 @default.
- W2023687724 countsByYear W20236877242013 @default.
- W2023687724 countsByYear W20236877242014 @default.
- W2023687724 countsByYear W20236877242015 @default.
- W2023687724 countsByYear W20236877242016 @default.
- W2023687724 countsByYear W20236877242017 @default.
- W2023687724 countsByYear W20236877242018 @default.
- W2023687724 countsByYear W20236877242019 @default.
- W2023687724 countsByYear W20236877242020 @default.
- W2023687724 countsByYear W20236877242021 @default.
- W2023687724 countsByYear W20236877242022 @default.
- W2023687724 countsByYear W20236877242023 @default.
- W2023687724 crossrefType "journal-article" @default.
- W2023687724 hasAuthorship W2023687724A5030540605 @default.
- W2023687724 hasAuthorship W2023687724A5069181601 @default.
- W2023687724 hasAuthorship W2023687724A5076408429 @default.
- W2023687724 hasConcept C105795698 @default.
- W2023687724 hasConcept C107673813 @default.
- W2023687724 hasConcept C114289077 @default.
- W2023687724 hasConcept C117568660 @default.
- W2023687724 hasConcept C134306372 @default.
- W2023687724 hasConcept C149782125 @default.
- W2023687724 hasConcept C159620131 @default.
- W2023687724 hasConcept C159877910 @default.
- W2023687724 hasConcept C161677786 @default.
- W2023687724 hasConcept C18903297 @default.
- W2023687724 hasConcept C196070930 @default.
- W2023687724 hasConcept C205649164 @default.
- W2023687724 hasConcept C33923547 @default.
- W2023687724 hasConcept C4792198 @default.
- W2023687724 hasConcept C5297727 @default.
- W2023687724 hasConcept C86803240 @default.
- W2023687724 hasConceptScore W2023687724C105795698 @default.
- W2023687724 hasConceptScore W2023687724C107673813 @default.
- W2023687724 hasConceptScore W2023687724C114289077 @default.
- W2023687724 hasConceptScore W2023687724C117568660 @default.
- W2023687724 hasConceptScore W2023687724C134306372 @default.
- W2023687724 hasConceptScore W2023687724C149782125 @default.
- W2023687724 hasConceptScore W2023687724C159620131 @default.
- W2023687724 hasConceptScore W2023687724C159877910 @default.
- W2023687724 hasConceptScore W2023687724C161677786 @default.
- W2023687724 hasConceptScore W2023687724C18903297 @default.
- W2023687724 hasConceptScore W2023687724C196070930 @default.
- W2023687724 hasConceptScore W2023687724C205649164 @default.
- W2023687724 hasConceptScore W2023687724C33923547 @default.