Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023688148> ?p ?o ?g. }
- W2023688148 endingPage "e94811" @default.
- W2023688148 startingPage "e94811" @default.
- W2023688148 abstract "Despite being a major public health problem, falls in the elderly cannot be detected efficiently yet. Many studies have used acceleration as the main input to discriminate between falls and activities of daily living (ADL). In recent years, there has been an increasing interest in using smartphones for fall detection. The most promising results have been obtained by supervised Machine Learning algorithms. However, a drawback of these approaches is that they rely on falls simulated by young or mature people, which might not represent every possible fall situation and might be different from older people's falls. Thus, we propose to tackle the problem of fall detection by applying a kind of novelty detection methods which rely only on true ADL. In this way, a fall is any abnormal movement with respect to ADL. A system based on these methods could easily adapt itself to new situations since new ADL could be recorded continuously and the system could be re-trained on the fly. The goal of this work is to explore the use of such novelty detectors by selecting one of them and by comparing it with a state-of-the-art traditional supervised method under different conditions. The data sets we have collected were recorded with smartphones. Ten volunteers simulated eight type of falls, whereas ADL were recorded while they carried the phone in their real life. Even though we have not collected data from the elderly, the data sets were suitable to check the adaptability of novelty detectors. They have been made publicly available to improve the reproducibility of our results. We have studied several novelty detection methods, selecting the nearest neighbour-based technique (NN) as the most suitable. Then, we have compared NN with the Support Vector Machine (SVM). In most situations a generic SVM outperformed an adapted NN." @default.
- W2023688148 created "2016-06-24" @default.
- W2023688148 creator A5009231948 @default.
- W2023688148 creator A5016676505 @default.
- W2023688148 creator A5045297510 @default.
- W2023688148 creator A5055200388 @default.
- W2023688148 date "2014-04-15" @default.
- W2023688148 modified "2023-10-14" @default.
- W2023688148 title "Detecting Falls as Novelties in Acceleration Patterns Acquired with Smartphones" @default.
- W2023688148 cites W144101805 @default.
- W2023688148 cites W1896220786 @default.
- W2023688148 cites W1971422403 @default.
- W2023688148 cites W1989081063 @default.
- W2023688148 cites W2017803470 @default.
- W2023688148 cites W2032425709 @default.
- W2023688148 cites W2033264974 @default.
- W2023688148 cites W2040815804 @default.
- W2023688148 cites W2042565362 @default.
- W2023688148 cites W2048681918 @default.
- W2023688148 cites W2054480530 @default.
- W2023688148 cites W2076068958 @default.
- W2023688148 cites W2081114569 @default.
- W2023688148 cites W2081241079 @default.
- W2023688148 cites W2096962968 @default.
- W2023688148 cites W2118157558 @default.
- W2023688148 cites W2130629933 @default.
- W2023688148 cites W2153635508 @default.
- W2023688148 cites W2155326828 @default.
- W2023688148 cites W2159583114 @default.
- W2023688148 cites W2161464748 @default.
- W2023688148 cites W2164086816 @default.
- W2023688148 cites W2169558892 @default.
- W2023688148 cites W2170672895 @default.
- W2023688148 cites W2268165337 @default.
- W2023688148 cites W4378882060 @default.
- W2023688148 cites W3142031928 @default.
- W2023688148 doi "https://doi.org/10.1371/journal.pone.0094811" @default.
- W2023688148 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3988107" @default.
- W2023688148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24736626" @default.
- W2023688148 hasPublicationYear "2014" @default.
- W2023688148 type Work @default.
- W2023688148 sameAs 2023688148 @default.
- W2023688148 citedByCount "128" @default.
- W2023688148 countsByYear W20236881482014 @default.
- W2023688148 countsByYear W20236881482015 @default.
- W2023688148 countsByYear W20236881482016 @default.
- W2023688148 countsByYear W20236881482017 @default.
- W2023688148 countsByYear W20236881482018 @default.
- W2023688148 countsByYear W20236881482019 @default.
- W2023688148 countsByYear W20236881482020 @default.
- W2023688148 countsByYear W20236881482021 @default.
- W2023688148 countsByYear W20236881482022 @default.
- W2023688148 countsByYear W20236881482023 @default.
- W2023688148 crossrefType "journal-article" @default.
- W2023688148 hasAuthorship W2023688148A5009231948 @default.
- W2023688148 hasAuthorship W2023688148A5016676505 @default.
- W2023688148 hasAuthorship W2023688148A5045297510 @default.
- W2023688148 hasAuthorship W2023688148A5055200388 @default.
- W2023688148 hasBestOaLocation W20236881481 @default.
- W2023688148 hasConcept C107457646 @default.
- W2023688148 hasConcept C117896860 @default.
- W2023688148 hasConcept C119857082 @default.
- W2023688148 hasConcept C121332964 @default.
- W2023688148 hasConcept C121687571 @default.
- W2023688148 hasConcept C138885662 @default.
- W2023688148 hasConcept C154945302 @default.
- W2023688148 hasConcept C15744967 @default.
- W2023688148 hasConcept C177606310 @default.
- W2023688148 hasConcept C1862650 @default.
- W2023688148 hasConcept C18903297 @default.
- W2023688148 hasConcept C190385971 @default.
- W2023688148 hasConcept C2777131913 @default.
- W2023688148 hasConcept C2778707766 @default.
- W2023688148 hasConcept C2778738651 @default.
- W2023688148 hasConcept C2778924833 @default.
- W2023688148 hasConcept C3017944768 @default.
- W2023688148 hasConcept C41008148 @default.
- W2023688148 hasConcept C41895202 @default.
- W2023688148 hasConcept C44154836 @default.
- W2023688148 hasConcept C545542383 @default.
- W2023688148 hasConcept C71924100 @default.
- W2023688148 hasConcept C74650414 @default.
- W2023688148 hasConcept C77805123 @default.
- W2023688148 hasConcept C79544238 @default.
- W2023688148 hasConcept C86803240 @default.
- W2023688148 hasConcept C99508421 @default.
- W2023688148 hasConceptScore W2023688148C107457646 @default.
- W2023688148 hasConceptScore W2023688148C117896860 @default.
- W2023688148 hasConceptScore W2023688148C119857082 @default.
- W2023688148 hasConceptScore W2023688148C121332964 @default.
- W2023688148 hasConceptScore W2023688148C121687571 @default.
- W2023688148 hasConceptScore W2023688148C138885662 @default.
- W2023688148 hasConceptScore W2023688148C154945302 @default.
- W2023688148 hasConceptScore W2023688148C15744967 @default.
- W2023688148 hasConceptScore W2023688148C177606310 @default.
- W2023688148 hasConceptScore W2023688148C1862650 @default.
- W2023688148 hasConceptScore W2023688148C18903297 @default.
- W2023688148 hasConceptScore W2023688148C190385971 @default.