Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023688891> ?p ?o ?g. }
- W2023688891 endingPage "e1003661" @default.
- W2023688891 startingPage "e1003661" @default.
- W2023688891 abstract "Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process, which we represent as a noisy or stochastic posterior." @default.
- W2023688891 created "2016-06-24" @default.
- W2023688891 creator A5024986150 @default.
- W2023688891 creator A5069715982 @default.
- W2023688891 creator A5090892103 @default.
- W2023688891 date "2014-06-19" @default.
- W2023688891 modified "2023-10-06" @default.
- W2023688891 title "On the Origins of Suboptimality in Human Probabilistic Inference" @default.
- W2023688891 cites W1968074165 @default.
- W2023688891 cites W1972983651 @default.
- W2023688891 cites W1981578159 @default.
- W2023688891 cites W1983540233 @default.
- W2023688891 cites W1984580484 @default.
- W2023688891 cites W1992570126 @default.
- W2023688891 cites W1994226733 @default.
- W2023688891 cites W1995181543 @default.
- W2023688891 cites W1999725516 @default.
- W2023688891 cites W2005111635 @default.
- W2023688891 cites W2009954135 @default.
- W2023688891 cites W2015818008 @default.
- W2023688891 cites W2035315669 @default.
- W2023688891 cites W2035912487 @default.
- W2023688891 cites W2041946752 @default.
- W2023688891 cites W2047866768 @default.
- W2023688891 cites W2057409808 @default.
- W2023688891 cites W2057765075 @default.
- W2023688891 cites W2059100041 @default.
- W2023688891 cites W2062526841 @default.
- W2023688891 cites W2065609259 @default.
- W2023688891 cites W2067064274 @default.
- W2023688891 cites W2072891170 @default.
- W2023688891 cites W2083227997 @default.
- W2023688891 cites W2091318897 @default.
- W2023688891 cites W2098014671 @default.
- W2023688891 cites W2103485762 @default.
- W2023688891 cites W2103688354 @default.
- W2023688891 cites W2116089974 @default.
- W2023688891 cites W2117215414 @default.
- W2023688891 cites W2118354656 @default.
- W2023688891 cites W2126880773 @default.
- W2023688891 cites W2129819572 @default.
- W2023688891 cites W2130460140 @default.
- W2023688891 cites W2131215403 @default.
- W2023688891 cites W2131353194 @default.
- W2023688891 cites W2132049331 @default.
- W2023688891 cites W2133877521 @default.
- W2023688891 cites W2135173838 @default.
- W2023688891 cites W2136022845 @default.
- W2023688891 cites W2138035124 @default.
- W2023688891 cites W2140751401 @default.
- W2023688891 cites W2144984120 @default.
- W2023688891 cites W2148534890 @default.
- W2023688891 cites W2148596731 @default.
- W2023688891 cites W2156707826 @default.
- W2023688891 cites W2160291974 @default.
- W2023688891 cites W2160296521 @default.
- W2023688891 cites W2914656440 @default.
- W2023688891 cites W3011865677 @default.
- W2023688891 cites W32980360 @default.
- W2023688891 cites W4211177544 @default.
- W2023688891 cites W44951016 @default.
- W2023688891 cites W638544165 @default.
- W2023688891 doi "https://doi.org/10.1371/journal.pcbi.1003661" @default.
- W2023688891 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4063671" @default.
- W2023688891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24945142" @default.
- W2023688891 hasPublicationYear "2014" @default.
- W2023688891 type Work @default.
- W2023688891 sameAs 2023688891 @default.
- W2023688891 citedByCount "127" @default.
- W2023688891 countsByYear W20236888912014 @default.
- W2023688891 countsByYear W20236888912015 @default.
- W2023688891 countsByYear W20236888912016 @default.
- W2023688891 countsByYear W20236888912017 @default.
- W2023688891 countsByYear W20236888912018 @default.
- W2023688891 countsByYear W20236888912019 @default.
- W2023688891 countsByYear W20236888912020 @default.
- W2023688891 countsByYear W20236888912021 @default.
- W2023688891 countsByYear W20236888912022 @default.
- W2023688891 countsByYear W20236888912023 @default.
- W2023688891 crossrefType "journal-article" @default.
- W2023688891 hasAuthorship W2023688891A5024986150 @default.
- W2023688891 hasAuthorship W2023688891A5069715982 @default.
- W2023688891 hasAuthorship W2023688891A5090892103 @default.
- W2023688891 hasBestOaLocation W20236888911 @default.
- W2023688891 hasConcept C105795698 @default.
- W2023688891 hasConcept C107673813 @default.
- W2023688891 hasConcept C121332964 @default.
- W2023688891 hasConcept C134261354 @default.
- W2023688891 hasConcept C149782125 @default.
- W2023688891 hasConcept C153180895 @default.
- W2023688891 hasConcept C154945302 @default.
- W2023688891 hasConcept C160234255 @default.
- W2023688891 hasConcept C177769412 @default.
- W2023688891 hasConcept C26004113 @default.
- W2023688891 hasConcept C2776214188 @default.
- W2023688891 hasConcept C2780704645 @default.
- W2023688891 hasConcept C33923547 @default.
- W2023688891 hasConcept C41008148 @default.