Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023698270> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2023698270 abstract "Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model’s were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India’s economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts." @default.
- W2023698270 created "2016-06-24" @default.
- W2023698270 creator A5002631641 @default.
- W2023698270 date "2014-01-01" @default.
- W2023698270 modified "2023-10-12" @default.
- W2023698270 title "Monthly monsoon rainfall forecasting using artificial neural networks" @default.
- W2023698270 cites W2018270410 @default.
- W2023698270 cites W2131346755 @default.
- W2023698270 doi "https://doi.org/10.1063/1.4897855" @default.
- W2023698270 hasPublicationYear "2014" @default.
- W2023698270 type Work @default.
- W2023698270 sameAs 2023698270 @default.
- W2023698270 citedByCount "1" @default.
- W2023698270 countsByYear W20236982702022 @default.
- W2023698270 crossrefType "proceedings-article" @default.
- W2023698270 hasAuthorship W2023698270A5002631641 @default.
- W2023698270 hasConcept C119857082 @default.
- W2023698270 hasConcept C127313418 @default.
- W2023698270 hasConcept C136996986 @default.
- W2023698270 hasConcept C152877465 @default.
- W2023698270 hasConcept C153294291 @default.
- W2023698270 hasConcept C179717631 @default.
- W2023698270 hasConcept C205649164 @default.
- W2023698270 hasConcept C21001229 @default.
- W2023698270 hasConcept C39432304 @default.
- W2023698270 hasConcept C41008148 @default.
- W2023698270 hasConcept C48921125 @default.
- W2023698270 hasConcept C49204034 @default.
- W2023698270 hasConcept C50644808 @default.
- W2023698270 hasConcept C60908668 @default.
- W2023698270 hasConceptScore W2023698270C119857082 @default.
- W2023698270 hasConceptScore W2023698270C127313418 @default.
- W2023698270 hasConceptScore W2023698270C136996986 @default.
- W2023698270 hasConceptScore W2023698270C152877465 @default.
- W2023698270 hasConceptScore W2023698270C153294291 @default.
- W2023698270 hasConceptScore W2023698270C179717631 @default.
- W2023698270 hasConceptScore W2023698270C205649164 @default.
- W2023698270 hasConceptScore W2023698270C21001229 @default.
- W2023698270 hasConceptScore W2023698270C39432304 @default.
- W2023698270 hasConceptScore W2023698270C41008148 @default.
- W2023698270 hasConceptScore W2023698270C48921125 @default.
- W2023698270 hasConceptScore W2023698270C49204034 @default.
- W2023698270 hasConceptScore W2023698270C50644808 @default.
- W2023698270 hasConceptScore W2023698270C60908668 @default.
- W2023698270 hasLocation W20236982701 @default.
- W2023698270 hasOpenAccess W2023698270 @default.
- W2023698270 hasPrimaryLocation W20236982701 @default.
- W2023698270 hasRelatedWork W1961772213 @default.
- W2023698270 hasRelatedWork W2186980807 @default.
- W2023698270 hasRelatedWork W2331701639 @default.
- W2023698270 hasRelatedWork W2489361212 @default.
- W2023698270 hasRelatedWork W2797282764 @default.
- W2023698270 hasRelatedWork W2892544221 @default.
- W2023698270 hasRelatedWork W2994741194 @default.
- W2023698270 hasRelatedWork W3023264678 @default.
- W2023698270 hasRelatedWork W3092347950 @default.
- W2023698270 hasRelatedWork W4289363976 @default.
- W2023698270 isParatext "false" @default.
- W2023698270 isRetracted "false" @default.
- W2023698270 magId "2023698270" @default.
- W2023698270 workType "article" @default.