Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023721178> ?p ?o ?g. }
- W2023721178 endingPage "81" @default.
- W2023721178 startingPage "65" @default.
- W2023721178 abstract "In this paper, we propose an efficient quick attribute reduct algorithm based on neighborhood rough set model. In this algorithm we divide the objects (records) of the whole data set into a series of buckets based on their Euclidean distances, and then iterate each record by the sequence of buckets to calculate the positive region of neighborhood rough set model. We also prove that each record’s θ-neighborhood elements can only be contained in its own bucket and its adjacent buckets, thus it can reduce the iterations greatly. Based on the division of buckets, we then present a new fast algorithm to calculate the positive region of neighborhood rough set model, which can achieve a complexity of O(m|U|),m is the number of attributes, |U| is the number of records containing in the data set. Furthermore, with the new fast positive region computation algorithm, we present a quick reduct algorithm for neighborhood rough set model, and our algorithm can achieve a complexity of O(m2|U|). At last, the efficiency of this quick reduct algorithm is proved by comparable experiments, and especially this algorithm is more suitable for the reduction of big data." @default.
- W2023721178 created "2016-06-24" @default.
- W2023721178 creator A5022214208 @default.
- W2023721178 creator A5036689042 @default.
- W2023721178 creator A5061136923 @default.
- W2023721178 creator A5066982002 @default.
- W2023721178 date "2014-07-01" @default.
- W2023721178 modified "2023-10-16" @default.
- W2023721178 title "Quick attribute reduct algorithm for neighborhood rough set model" @default.
- W2023721178 cites W1492379603 @default.
- W2023721178 cites W1553701556 @default.
- W2023721178 cites W1892848734 @default.
- W2023721178 cites W1978266471 @default.
- W2023721178 cites W1978603136 @default.
- W2023721178 cites W2003716603 @default.
- W2023721178 cites W2007262119 @default.
- W2023721178 cites W2026122471 @default.
- W2023721178 cites W2035217144 @default.
- W2023721178 cites W2036026932 @default.
- W2023721178 cites W2041182276 @default.
- W2023721178 cites W2046400033 @default.
- W2023721178 cites W2049252182 @default.
- W2023721178 cites W2051958371 @default.
- W2023721178 cites W2055266411 @default.
- W2023721178 cites W2075954091 @default.
- W2023721178 cites W2078376232 @default.
- W2023721178 cites W2078975878 @default.
- W2023721178 cites W2082173396 @default.
- W2023721178 cites W2084344560 @default.
- W2023721178 cites W2086876270 @default.
- W2023721178 cites W2089137303 @default.
- W2023721178 cites W2092713780 @default.
- W2023721178 cites W2098093602 @default.
- W2023721178 cites W2110183025 @default.
- W2023721178 cites W2134866037 @default.
- W2023721178 cites W2137396323 @default.
- W2023721178 cites W2143451122 @default.
- W2023721178 cites W2158633287 @default.
- W2023721178 cites W2165267798 @default.
- W2023721178 cites W2165885026 @default.
- W2023721178 cites W2168523997 @default.
- W2023721178 cites W2169038408 @default.
- W2023721178 cites W2340020088 @default.
- W2023721178 cites W2912707296 @default.
- W2023721178 doi "https://doi.org/10.1016/j.ins.2014.02.093" @default.
- W2023721178 hasPublicationYear "2014" @default.
- W2023721178 type Work @default.
- W2023721178 sameAs 2023721178 @default.
- W2023721178 citedByCount "51" @default.
- W2023721178 countsByYear W20237211782014 @default.
- W2023721178 countsByYear W20237211782015 @default.
- W2023721178 countsByYear W20237211782016 @default.
- W2023721178 countsByYear W20237211782017 @default.
- W2023721178 countsByYear W20237211782018 @default.
- W2023721178 countsByYear W20237211782019 @default.
- W2023721178 countsByYear W20237211782020 @default.
- W2023721178 countsByYear W20237211782022 @default.
- W2023721178 countsByYear W20237211782023 @default.
- W2023721178 crossrefType "journal-article" @default.
- W2023721178 hasAuthorship W2023721178A5022214208 @default.
- W2023721178 hasAuthorship W2023721178A5036689042 @default.
- W2023721178 hasAuthorship W2023721178A5061136923 @default.
- W2023721178 hasAuthorship W2023721178A5066982002 @default.
- W2023721178 hasConcept C111012933 @default.
- W2023721178 hasConcept C111335779 @default.
- W2023721178 hasConcept C11413529 @default.
- W2023721178 hasConcept C120174047 @default.
- W2023721178 hasConcept C124101348 @default.
- W2023721178 hasConcept C154945302 @default.
- W2023721178 hasConcept C177264268 @default.
- W2023721178 hasConcept C199360897 @default.
- W2023721178 hasConcept C2524010 @default.
- W2023721178 hasConcept C2778112365 @default.
- W2023721178 hasConcept C33923547 @default.
- W2023721178 hasConcept C41008148 @default.
- W2023721178 hasConcept C45374587 @default.
- W2023721178 hasConcept C54355233 @default.
- W2023721178 hasConcept C69177213 @default.
- W2023721178 hasConcept C75814411 @default.
- W2023721178 hasConcept C86803240 @default.
- W2023721178 hasConceptScore W2023721178C111012933 @default.
- W2023721178 hasConceptScore W2023721178C111335779 @default.
- W2023721178 hasConceptScore W2023721178C11413529 @default.
- W2023721178 hasConceptScore W2023721178C120174047 @default.
- W2023721178 hasConceptScore W2023721178C124101348 @default.
- W2023721178 hasConceptScore W2023721178C154945302 @default.
- W2023721178 hasConceptScore W2023721178C177264268 @default.
- W2023721178 hasConceptScore W2023721178C199360897 @default.
- W2023721178 hasConceptScore W2023721178C2524010 @default.
- W2023721178 hasConceptScore W2023721178C2778112365 @default.
- W2023721178 hasConceptScore W2023721178C33923547 @default.
- W2023721178 hasConceptScore W2023721178C41008148 @default.
- W2023721178 hasConceptScore W2023721178C45374587 @default.
- W2023721178 hasConceptScore W2023721178C54355233 @default.
- W2023721178 hasConceptScore W2023721178C69177213 @default.
- W2023721178 hasConceptScore W2023721178C75814411 @default.
- W2023721178 hasConceptScore W2023721178C86803240 @default.
- W2023721178 hasLocation W20237211781 @default.