Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023727863> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2023727863 endingPage "217" @default.
- W2023727863 startingPage "181" @default.
- W2023727863 abstract "The systematic study of various mean-values of nonnegative valued functions is due in large part to the work of J. L. W. V. Jensen [12], A. Kolmogoroff [11], and B. Jessen [13]. In this paper we present a similar theory of certain means of functions whose values are taken from a collection of convex bodies in a finite dimensional Euclidean space. The range of nonnegative valued functions is totally ordered while the collection of convex bodies to be considered is partially ordered by set inclusion; corresponding to inequalities, we shall have inclusions, here to be called inequalities, between mean-values. Thus the discussion will furnish an example of a partially ordered system whose algebraic and topological structure is sufficient to admit a fairly elaborate theory of inequalities analogous to that of the real numbers. The first section is a resume of those parts of the work of Jensen, Kolmogoroff, and Jessen for which analogues will be developed. ?2 treats of pertinent material about star and convex bodies. Certain families of star bodies and of convex bodies are defined in the third section; these latter play the role of nonnegative valued functions. Two systems of power means of such families are described. Each system is, in its way, anialogous to the power means of nonnegative valued functions. In ?4 we discuss some special cases of power means including elementary means and the Riemaiin-Minkowski integrals of A. Dinghas [2], [3]. Also some rotation invariants of a convex body are described as power means of special families determined by the convex body. The fifth section begins with crucial properties of the means and contains an extremal characterization for the two systems of means defined in the third section. Analogues of Jensen's and Jessen's inequalities make up ?6. We also mentioni the limiting cases of power means as the power index becomes infinite, positively and negatively. As an applicationl of Jessen's inequality, a Brunn-Minkowski type theorem is proved. In the final section we discuss some further systems of meanls of convex bodies. 1. The definition of the elementary power means extends in a natural way to include power means of certain functions f which have finite, nonnegative values and whose domain T is a compact topological group equipped with its Haar measure. Iff is bounded and measurable over its domain, its pth- power mean is defined by" @default.
- W2023727863 created "2016-06-24" @default.
- W2023727863 creator A5071761169 @default.
- W2023727863 date "1967-01-01" @default.
- W2023727863 modified "2023-09-25" @default.
- W2023727863 title "Some means of convex bodies" @default.
- W2023727863 cites W1954793731 @default.
- W2023727863 cites W1984117634 @default.
- W2023727863 cites W2065302559 @default.
- W2023727863 cites W2071554780 @default.
- W2023727863 cites W2281671182 @default.
- W2023727863 cites W2316432841 @default.
- W2023727863 cites W4255034261 @default.
- W2023727863 cites W572484931 @default.
- W2023727863 doi "https://doi.org/10.1090/s0002-9947-1967-0234349-8" @default.
- W2023727863 hasPublicationYear "1967" @default.
- W2023727863 type Work @default.
- W2023727863 sameAs 2023727863 @default.
- W2023727863 citedByCount "15" @default.
- W2023727863 countsByYear W20237278632017 @default.
- W2023727863 countsByYear W20237278632023 @default.
- W2023727863 crossrefType "journal-article" @default.
- W2023727863 hasAuthorship W2023727863A5071761169 @default.
- W2023727863 hasBestOaLocation W20237278631 @default.
- W2023727863 hasConcept C112680207 @default.
- W2023727863 hasConcept C12108790 @default.
- W2023727863 hasConcept C157972887 @default.
- W2023727863 hasConcept C202444582 @default.
- W2023727863 hasConcept C2524010 @default.
- W2023727863 hasConcept C33923547 @default.
- W2023727863 hasConcept C44550424 @default.
- W2023727863 hasConceptScore W2023727863C112680207 @default.
- W2023727863 hasConceptScore W2023727863C12108790 @default.
- W2023727863 hasConceptScore W2023727863C157972887 @default.
- W2023727863 hasConceptScore W2023727863C202444582 @default.
- W2023727863 hasConceptScore W2023727863C2524010 @default.
- W2023727863 hasConceptScore W2023727863C33923547 @default.
- W2023727863 hasConceptScore W2023727863C44550424 @default.
- W2023727863 hasIssue "2" @default.
- W2023727863 hasLocation W20237278631 @default.
- W2023727863 hasOpenAccess W2023727863 @default.
- W2023727863 hasPrimaryLocation W20237278631 @default.
- W2023727863 hasRelatedWork W1818698982 @default.
- W2023727863 hasRelatedWork W1867657303 @default.
- W2023727863 hasRelatedWork W1966547963 @default.
- W2023727863 hasRelatedWork W1971088065 @default.
- W2023727863 hasRelatedWork W1980491594 @default.
- W2023727863 hasRelatedWork W1998973221 @default.
- W2023727863 hasRelatedWork W2073391670 @default.
- W2023727863 hasRelatedWork W4251917418 @default.
- W2023727863 hasRelatedWork W4297581286 @default.
- W2023727863 hasRelatedWork W4313304944 @default.
- W2023727863 hasVolume "129" @default.
- W2023727863 isParatext "false" @default.
- W2023727863 isRetracted "false" @default.
- W2023727863 magId "2023727863" @default.
- W2023727863 workType "article" @default.