Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023750438> ?p ?o ?g. }
- W2023750438 abstract "This paper proposes a novel neural network based forecaster that predicts more than one variable at a time. A two stage neural network training algorithm is used that employs Newton's algorithm to estimate a vector of hidden unit optimal learning factors in each iteration. In order to reduce the size of the neural network and train it more effectively, the forecaster uses both subsetting and transformation types of feature selection, reducing the number of neural net inputs by 70 %. This reduces the chances of memorization giving a good optimal forecaster. Interestingly, networks with more input variable types perform as well as smaller networks having fewer variable types." @default.
- W2023750438 created "2016-06-24" @default.
- W2023750438 creator A5027463878 @default.
- W2023750438 creator A5042213267 @default.
- W2023750438 creator A5059366346 @default.
- W2023750438 creator A5072655746 @default.
- W2023750438 date "2014-12-01" @default.
- W2023750438 modified "2023-09-27" @default.
- W2023750438 title "Multi-variable Neural Network Forecasting Using Two Stage Feature Selection" @default.
- W2023750438 cites W1523989055 @default.
- W2023750438 cites W1586335931 @default.
- W2023750438 cites W1770825568 @default.
- W2023750438 cites W184366100 @default.
- W2023750438 cites W1974284277 @default.
- W2023750438 cites W1979422307 @default.
- W2023750438 cites W2001385964 @default.
- W2023750438 cites W2008968509 @default.
- W2023750438 cites W2014915963 @default.
- W2023750438 cites W2017337590 @default.
- W2023750438 cites W2029852718 @default.
- W2023750438 cites W2050042584 @default.
- W2023750438 cites W2058774035 @default.
- W2023750438 cites W2066162502 @default.
- W2023750438 cites W2069997928 @default.
- W2023750438 cites W2072422720 @default.
- W2023750438 cites W2074994981 @default.
- W2023750438 cites W2081227983 @default.
- W2023750438 cites W2087556306 @default.
- W2023750438 cites W2098717855 @default.
- W2023750438 cites W2102201073 @default.
- W2023750438 cites W2107186460 @default.
- W2023750438 cites W2115294291 @default.
- W2023750438 cites W2123513648 @default.
- W2023750438 cites W2123567689 @default.
- W2023750438 cites W2124776405 @default.
- W2023750438 cites W2130945372 @default.
- W2023750438 cites W2138484437 @default.
- W2023750438 cites W2144841545 @default.
- W2023750438 cites W2155622525 @default.
- W2023750438 cites W2158948182 @default.
- W2023750438 cites W2161070585 @default.
- W2023750438 cites W2185636084 @default.
- W2023750438 doi "https://doi.org/10.1109/icmla.2014.45" @default.
- W2023750438 hasPublicationYear "2014" @default.
- W2023750438 type Work @default.
- W2023750438 sameAs 2023750438 @default.
- W2023750438 citedByCount "1" @default.
- W2023750438 countsByYear W20237504382020 @default.
- W2023750438 crossrefType "proceedings-article" @default.
- W2023750438 hasAuthorship W2023750438A5027463878 @default.
- W2023750438 hasAuthorship W2023750438A5042213267 @default.
- W2023750438 hasAuthorship W2023750438A5059366346 @default.
- W2023750438 hasAuthorship W2023750438A5072655746 @default.
- W2023750438 hasConcept C104317684 @default.
- W2023750438 hasConcept C119857082 @default.
- W2023750438 hasConcept C134306372 @default.
- W2023750438 hasConcept C138885662 @default.
- W2023750438 hasConcept C145420912 @default.
- W2023750438 hasConcept C148483581 @default.
- W2023750438 hasConcept C154945302 @default.
- W2023750438 hasConcept C182365436 @default.
- W2023750438 hasConcept C185592680 @default.
- W2023750438 hasConcept C204241405 @default.
- W2023750438 hasConcept C2776401178 @default.
- W2023750438 hasConcept C30038468 @default.
- W2023750438 hasConcept C33923547 @default.
- W2023750438 hasConcept C41008148 @default.
- W2023750438 hasConcept C41895202 @default.
- W2023750438 hasConcept C50644808 @default.
- W2023750438 hasConcept C55493867 @default.
- W2023750438 hasConcept C81917197 @default.
- W2023750438 hasConceptScore W2023750438C104317684 @default.
- W2023750438 hasConceptScore W2023750438C119857082 @default.
- W2023750438 hasConceptScore W2023750438C134306372 @default.
- W2023750438 hasConceptScore W2023750438C138885662 @default.
- W2023750438 hasConceptScore W2023750438C145420912 @default.
- W2023750438 hasConceptScore W2023750438C148483581 @default.
- W2023750438 hasConceptScore W2023750438C154945302 @default.
- W2023750438 hasConceptScore W2023750438C182365436 @default.
- W2023750438 hasConceptScore W2023750438C185592680 @default.
- W2023750438 hasConceptScore W2023750438C204241405 @default.
- W2023750438 hasConceptScore W2023750438C2776401178 @default.
- W2023750438 hasConceptScore W2023750438C30038468 @default.
- W2023750438 hasConceptScore W2023750438C33923547 @default.
- W2023750438 hasConceptScore W2023750438C41008148 @default.
- W2023750438 hasConceptScore W2023750438C41895202 @default.
- W2023750438 hasConceptScore W2023750438C50644808 @default.
- W2023750438 hasConceptScore W2023750438C55493867 @default.
- W2023750438 hasConceptScore W2023750438C81917197 @default.
- W2023750438 hasLocation W20237504381 @default.
- W2023750438 hasOpenAccess W2023750438 @default.
- W2023750438 hasPrimaryLocation W20237504381 @default.
- W2023750438 hasRelatedWork W2961085424 @default.
- W2023750438 hasRelatedWork W3087493185 @default.
- W2023750438 hasRelatedWork W3163334550 @default.
- W2023750438 hasRelatedWork W3200179079 @default.
- W2023750438 hasRelatedWork W4225915909 @default.
- W2023750438 hasRelatedWork W4286629047 @default.
- W2023750438 hasRelatedWork W4293525103 @default.
- W2023750438 hasRelatedWork W4306321456 @default.