Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023753684> ?p ?o ?g. }
- W2023753684 endingPage "14" @default.
- W2023753684 startingPage "1" @default.
- W2023753684 abstract "Lung cancer is a disease with significant prevalence in several countries around the world. Its difficult treatment and rapid progression make the mortality rates among people affected by this illness to be very high. Aiming to offer a computational alternative for helping in detection of nodules, serving as a second opinion to the specialists, this work proposes a totally automatic methodology based on successive detection refining stages. The automated lung nodules detection scheme consists of six stages: thorax extraction, lung extraction, lung reconstruction, structures extraction, tubular structures elimination, and false positive reduction. In the thorax extraction stage all the artifacts external to the patient's body are discarded. Lung extraction stage is responsible for the identification of the lung parenchyma. The objective of the lung reconstruction stage is to prevent incorrect elimination of portions belonging to the parenchyma. Structures extraction stage comprises the selection of dense structures from inside the lung parenchyma. The next stage, tubular structures elimination eliminates a great part of the pulmonary trees. Finally, the false positive stage selects only structures with great probability to be nodule. Each of the several stages has very specific objectives in detection of particular cases of lung nodules, ensuring good matching rates even in difficult detection situations. We use 33 exams with diversified diagnosis and slices numbers for validating the methodology. We obtained a false positive per exam rate of 0.42 and false negative rate of 0.15. The total classification sensitivity obtained, measured out of the nodule candidates, was 84.84%. The specificity achieved was 96.15% and the total accuracy of the method was 95.21%." @default.
- W2023753684 created "2016-06-24" @default.
- W2023753684 creator A5014448875 @default.
- W2023753684 creator A5062372278 @default.
- W2023753684 creator A5079115000 @default.
- W2023753684 creator A5089485069 @default.
- W2023753684 date "2010-04-01" @default.
- W2023753684 modified "2023-10-14" @default.
- W2023753684 title "Methodology for automatic detection of lung nodules in computerized tomography images" @default.
- W2023753684 cites W116907232 @default.
- W2023753684 cites W1965479476 @default.
- W2023753684 cites W1966847100 @default.
- W2023753684 cites W1970089523 @default.
- W2023753684 cites W1991804665 @default.
- W2023753684 cites W1991985435 @default.
- W2023753684 cites W2012355247 @default.
- W2023753684 cites W2016672701 @default.
- W2023753684 cites W2023522838 @default.
- W2023753684 cites W2028532424 @default.
- W2023753684 cites W2030604164 @default.
- W2023753684 cites W2039300888 @default.
- W2023753684 cites W2048561164 @default.
- W2023753684 cites W2054648089 @default.
- W2023753684 cites W2081933348 @default.
- W2023753684 cites W2083432437 @default.
- W2023753684 cites W2085652537 @default.
- W2023753684 cites W2111042557 @default.
- W2023753684 cites W2112563636 @default.
- W2023753684 cites W2116999286 @default.
- W2023753684 cites W2121681828 @default.
- W2023753684 cites W2122692815 @default.
- W2023753684 cites W2135327979 @default.
- W2023753684 cites W2137288731 @default.
- W2023753684 cites W2138080168 @default.
- W2023753684 cites W2140775860 @default.
- W2023753684 cites W2157574022 @default.
- W2023753684 doi "https://doi.org/10.1016/j.cmpb.2009.07.006" @default.
- W2023753684 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19709774" @default.
- W2023753684 hasPublicationYear "2010" @default.
- W2023753684 type Work @default.
- W2023753684 sameAs 2023753684 @default.
- W2023753684 citedByCount "86" @default.
- W2023753684 countsByYear W20237536842012 @default.
- W2023753684 countsByYear W20237536842013 @default.
- W2023753684 countsByYear W20237536842014 @default.
- W2023753684 countsByYear W20237536842015 @default.
- W2023753684 countsByYear W20237536842016 @default.
- W2023753684 countsByYear W20237536842017 @default.
- W2023753684 countsByYear W20237536842018 @default.
- W2023753684 countsByYear W20237536842019 @default.
- W2023753684 countsByYear W20237536842020 @default.
- W2023753684 countsByYear W20237536842021 @default.
- W2023753684 countsByYear W20237536842022 @default.
- W2023753684 countsByYear W20237536842023 @default.
- W2023753684 crossrefType "journal-article" @default.
- W2023753684 hasAuthorship W2023753684A5014448875 @default.
- W2023753684 hasAuthorship W2023753684A5062372278 @default.
- W2023753684 hasAuthorship W2023753684A5079115000 @default.
- W2023753684 hasAuthorship W2023753684A5089485069 @default.
- W2023753684 hasBestOaLocation W20237536841 @default.
- W2023753684 hasConcept C126322002 @default.
- W2023753684 hasConcept C126838900 @default.
- W2023753684 hasConcept C142724271 @default.
- W2023753684 hasConcept C146357865 @default.
- W2023753684 hasConcept C151730666 @default.
- W2023753684 hasConcept C154945302 @default.
- W2023753684 hasConcept C196822366 @default.
- W2023753684 hasConcept C2776256026 @default.
- W2023753684 hasConcept C2776731575 @default.
- W2023753684 hasConcept C2777405583 @default.
- W2023753684 hasConcept C2777714996 @default.
- W2023753684 hasConcept C41008148 @default.
- W2023753684 hasConcept C544519230 @default.
- W2023753684 hasConcept C71924100 @default.
- W2023753684 hasConcept C86803240 @default.
- W2023753684 hasConcept C95922358 @default.
- W2023753684 hasConceptScore W2023753684C126322002 @default.
- W2023753684 hasConceptScore W2023753684C126838900 @default.
- W2023753684 hasConceptScore W2023753684C142724271 @default.
- W2023753684 hasConceptScore W2023753684C146357865 @default.
- W2023753684 hasConceptScore W2023753684C151730666 @default.
- W2023753684 hasConceptScore W2023753684C154945302 @default.
- W2023753684 hasConceptScore W2023753684C196822366 @default.
- W2023753684 hasConceptScore W2023753684C2776256026 @default.
- W2023753684 hasConceptScore W2023753684C2776731575 @default.
- W2023753684 hasConceptScore W2023753684C2777405583 @default.
- W2023753684 hasConceptScore W2023753684C2777714996 @default.
- W2023753684 hasConceptScore W2023753684C41008148 @default.
- W2023753684 hasConceptScore W2023753684C544519230 @default.
- W2023753684 hasConceptScore W2023753684C71924100 @default.
- W2023753684 hasConceptScore W2023753684C86803240 @default.
- W2023753684 hasConceptScore W2023753684C95922358 @default.
- W2023753684 hasIssue "1" @default.
- W2023753684 hasLocation W20237536841 @default.
- W2023753684 hasLocation W20237536842 @default.
- W2023753684 hasOpenAccess W2023753684 @default.
- W2023753684 hasPrimaryLocation W20237536841 @default.
- W2023753684 hasRelatedWork W2074522473 @default.