Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023754229> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2023754229 endingPage "142" @default.
- W2023754229 startingPage "131" @default.
- W2023754229 abstract "In monitoring of local seismicity, the occurrence of many chemical explosions poses sever practical problems of two kinds: (i) such recordings add significantly to the analyst workload and (ii) in extreme cases, pollute the seismicity data base to the extent of rendering it useless for serious scientific studies. In some countries, the local seismicity is equivalent to felt earthquakes but the problem remains since both earthquakes and explosions are and will be recorded by local stations. These events will therefore enter the network data center processing system, and thus, be subjected to further analysis. Source classification schemes are not always well suited for this kind of needed analysis at local distance ranges (not easily transportable). Besides, epicenter determinations may be less accurate in cases of few station reportings. The common denominator for failures is the modest usages of the information potential contained in seismic recordings being represented by a few time/amplitude parameters for the Pn- and Lg-phases. On the other hand, seismic waveform similarities for closely spaced earthquakes and explosions in particular are well established observationally. In this study period, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. To ensure adequate sampling, we used the nine different complex covariance time domain elements in combination with a suit of 12 bandpass filters equivalent to 108 observation pieces for a single event recording. We used a neural net scheme for teaching the computer to recognize new explosion recordings from a specific site through scanning of hundreds of detector segmented waveform files. No epicenter information was used in this analysis. The output was a single number between Zero and Four (log-scale) with an acceptance threshold (repeated explosion) of 1.2–analyst friendly usage. Actual tests were performed on two explosion sites of western Norway for which ground truth information was available. The 100% correct decisions were obtained between `site explosions' and hundreds of non-site events. A brute force test on the relative merits of the 12 frequency bands used gave that the 2–4 Hz and 8–12 Hz spectral parts were most informative. Experiment tied to two quarry sites for which ground truth information was lacking gave less sharp separation of site and non-site events. Since covariance elements comprise P- and S-waveform jointly, good spatial sampling is ensured even for single site 3C stations; beyond 10 km from the epicenter the scores were in the non-site category. The above approach to event discrimination is very flexible as we may combine several 3C stations with even z-component stations and besides, no analyst action in any way will be needed." @default.
- W2023754229 created "2016-06-24" @default.
- W2023754229 creator A5035557446 @default.
- W2023754229 creator A5043374141 @default.
- W2023754229 creator A5060877182 @default.
- W2023754229 date "1999-06-01" @default.
- W2023754229 modified "2023-09-24" @default.
- W2023754229 title "Explosion site recognition; neural net discriminator using single three-component stations" @default.
- W2023754229 cites W1535933602 @default.
- W2023754229 cites W1606029787 @default.
- W2023754229 cites W1970315356 @default.
- W2023754229 cites W2004825473 @default.
- W2023754229 cites W2005344105 @default.
- W2023754229 cites W2029622550 @default.
- W2023754229 cites W2045776232 @default.
- W2023754229 cites W2059485227 @default.
- W2023754229 cites W2073779270 @default.
- W2023754229 cites W2078266909 @default.
- W2023754229 cites W2147304519 @default.
- W2023754229 cites W2149116053 @default.
- W2023754229 cites W2159636522 @default.
- W2023754229 cites W2166102813 @default.
- W2023754229 cites W2168939102 @default.
- W2023754229 cites W2171923309 @default.
- W2023754229 cites W4237222446 @default.
- W2023754229 cites W648902316 @default.
- W2023754229 cites W1588259879 @default.
- W2023754229 doi "https://doi.org/10.1016/s0031-9201(99)00023-0" @default.
- W2023754229 hasPublicationYear "1999" @default.
- W2023754229 type Work @default.
- W2023754229 sameAs 2023754229 @default.
- W2023754229 citedByCount "16" @default.
- W2023754229 countsByYear W20237542292015 @default.
- W2023754229 countsByYear W20237542292016 @default.
- W2023754229 countsByYear W20237542292018 @default.
- W2023754229 countsByYear W20237542292019 @default.
- W2023754229 countsByYear W20237542292020 @default.
- W2023754229 countsByYear W20237542292022 @default.
- W2023754229 countsByYear W20237542292023 @default.
- W2023754229 crossrefType "journal-article" @default.
- W2023754229 hasAuthorship W2023754229A5035557446 @default.
- W2023754229 hasAuthorship W2023754229A5043374141 @default.
- W2023754229 hasAuthorship W2023754229A5060877182 @default.
- W2023754229 hasConcept C11413529 @default.
- W2023754229 hasConcept C121332964 @default.
- W2023754229 hasConcept C127313418 @default.
- W2023754229 hasConcept C154945302 @default.
- W2023754229 hasConcept C165205528 @default.
- W2023754229 hasConcept C169744125 @default.
- W2023754229 hasConcept C180205008 @default.
- W2023754229 hasConcept C197424946 @default.
- W2023754229 hasConcept C2779803651 @default.
- W2023754229 hasConcept C41008148 @default.
- W2023754229 hasConcept C50644808 @default.
- W2023754229 hasConcept C554190296 @default.
- W2023754229 hasConcept C60859754 @default.
- W2023754229 hasConcept C62520636 @default.
- W2023754229 hasConcept C76155785 @default.
- W2023754229 hasConcept C79403827 @default.
- W2023754229 hasConcept C83176761 @default.
- W2023754229 hasConcept C94915269 @default.
- W2023754229 hasConceptScore W2023754229C11413529 @default.
- W2023754229 hasConceptScore W2023754229C121332964 @default.
- W2023754229 hasConceptScore W2023754229C127313418 @default.
- W2023754229 hasConceptScore W2023754229C154945302 @default.
- W2023754229 hasConceptScore W2023754229C165205528 @default.
- W2023754229 hasConceptScore W2023754229C169744125 @default.
- W2023754229 hasConceptScore W2023754229C180205008 @default.
- W2023754229 hasConceptScore W2023754229C197424946 @default.
- W2023754229 hasConceptScore W2023754229C2779803651 @default.
- W2023754229 hasConceptScore W2023754229C41008148 @default.
- W2023754229 hasConceptScore W2023754229C50644808 @default.
- W2023754229 hasConceptScore W2023754229C554190296 @default.
- W2023754229 hasConceptScore W2023754229C60859754 @default.
- W2023754229 hasConceptScore W2023754229C62520636 @default.
- W2023754229 hasConceptScore W2023754229C76155785 @default.
- W2023754229 hasConceptScore W2023754229C79403827 @default.
- W2023754229 hasConceptScore W2023754229C83176761 @default.
- W2023754229 hasConceptScore W2023754229C94915269 @default.
- W2023754229 hasIssue "1-4" @default.
- W2023754229 hasLocation W20237542291 @default.
- W2023754229 hasOpenAccess W2023754229 @default.
- W2023754229 hasPrimaryLocation W20237542291 @default.
- W2023754229 hasRelatedWork W1878219584 @default.
- W2023754229 hasRelatedWork W1983658459 @default.
- W2023754229 hasRelatedWork W2030852094 @default.
- W2023754229 hasRelatedWork W2043525724 @default.
- W2023754229 hasRelatedWork W2155736536 @default.
- W2023754229 hasRelatedWork W2155809674 @default.
- W2023754229 hasRelatedWork W2194505949 @default.
- W2023754229 hasRelatedWork W2523582929 @default.
- W2023754229 hasRelatedWork W3130682836 @default.
- W2023754229 hasRelatedWork W320996220 @default.
- W2023754229 hasVolume "113" @default.
- W2023754229 isParatext "false" @default.
- W2023754229 isRetracted "false" @default.
- W2023754229 magId "2023754229" @default.
- W2023754229 workType "article" @default.