Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023758109> ?p ?o ?g. }
- W2023758109 endingPage "333" @default.
- W2023758109 startingPage "295" @default.
- W2023758109 abstract "The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ∼5mp (projectile masses) of water ice or 6mp of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in addition to silicates. Observed molecular species in the initial self-luminous vapor plume likely represent recombination products from completely dissociated target materials. The crater produced by the impact can be estimated from Earth-based observations of total ejected mass to be 130–220 m in diameter. This size range is consistent with a 220 m-diameter circular feature at the point of impact visible in highly processed, deconvolved HRI images. The final crater, however, may resemble an inverted sombrero-hat, with a deep central pit surrounded by a shallow excavation crater. Excavated distal material observed from the Earth was likely from the upper few meters contrasted with ballistic ejecta observed from the DI flyby, which included deep materials (10–30 m) within the diffuse plume above the crater and shallower (5–10 m) materials within the ejecta curtain." @default.
- W2023758109 created "2016-06-24" @default.
- W2023758109 creator A5005853546 @default.
- W2023758109 creator A5006350859 @default.
- W2023758109 creator A5056896229 @default.
- W2023758109 creator A5080552139 @default.
- W2023758109 creator A5085007022 @default.
- W2023758109 creator A5089646031 @default.
- W2023758109 date "2007-10-01" @default.
- W2023758109 modified "2023-10-16" @default.
- W2023758109 title "The Deep Impact oblique impact cratering experiment" @default.
- W2023758109 cites W1499201941 @default.
- W2023758109 cites W1568935506 @default.
- W2023758109 cites W1595119602 @default.
- W2023758109 cites W1612815720 @default.
- W2023758109 cites W1651099895 @default.
- W2023758109 cites W1655381311 @default.
- W2023758109 cites W1702546791 @default.
- W2023758109 cites W187883704 @default.
- W2023758109 cites W1928206646 @default.
- W2023758109 cites W1976840620 @default.
- W2023758109 cites W1984079072 @default.
- W2023758109 cites W1987510724 @default.
- W2023758109 cites W1988118843 @default.
- W2023758109 cites W1993052346 @default.
- W2023758109 cites W2002339059 @default.
- W2023758109 cites W2004561901 @default.
- W2023758109 cites W2008351561 @default.
- W2023758109 cites W2011853981 @default.
- W2023758109 cites W2017117201 @default.
- W2023758109 cites W2027620960 @default.
- W2023758109 cites W2029590300 @default.
- W2023758109 cites W2039861177 @default.
- W2023758109 cites W2057823569 @default.
- W2023758109 cites W2061118940 @default.
- W2023758109 cites W2063025014 @default.
- W2023758109 cites W2066402315 @default.
- W2023758109 cites W2067106823 @default.
- W2023758109 cites W2070918629 @default.
- W2023758109 cites W2075992793 @default.
- W2023758109 cites W2077714491 @default.
- W2023758109 cites W2078903110 @default.
- W2023758109 cites W2098620766 @default.
- W2023758109 cites W2105744124 @default.
- W2023758109 cites W2110877818 @default.
- W2023758109 cites W2127393091 @default.
- W2023758109 cites W2129772716 @default.
- W2023758109 cites W2130032381 @default.
- W2023758109 cites W2134662050 @default.
- W2023758109 cites W2138371804 @default.
- W2023758109 cites W2145487615 @default.
- W2023758109 cites W2145682260 @default.
- W2023758109 cites W2146348165 @default.
- W2023758109 cites W2161042003 @default.
- W2023758109 cites W2162587017 @default.
- W2023758109 cites W2418003191 @default.
- W2023758109 cites W2991430131 @default.
- W2023758109 cites W2994558921 @default.
- W2023758109 cites W2995024329 @default.
- W2023758109 cites W3016138183 @default.
- W2023758109 cites W3022959695 @default.
- W2023758109 cites W3023690560 @default.
- W2023758109 cites W3024020612 @default.
- W2023758109 cites W3034949061 @default.
- W2023758109 cites W3042499291 @default.
- W2023758109 cites W3047664284 @default.
- W2023758109 cites W3081015203 @default.
- W2023758109 cites W3118311755 @default.
- W2023758109 cites W3187596537 @default.
- W2023758109 cites W617368120 @default.
- W2023758109 doi "https://doi.org/10.1016/j.icarus.2007.06.006" @default.
- W2023758109 hasPublicationYear "2007" @default.
- W2023758109 type Work @default.
- W2023758109 sameAs 2023758109 @default.
- W2023758109 citedByCount "94" @default.
- W2023758109 countsByYear W20237581092012 @default.
- W2023758109 countsByYear W20237581092013 @default.
- W2023758109 countsByYear W20237581092014 @default.
- W2023758109 countsByYear W20237581092015 @default.
- W2023758109 countsByYear W20237581092016 @default.
- W2023758109 countsByYear W20237581092017 @default.
- W2023758109 countsByYear W20237581092018 @default.
- W2023758109 countsByYear W20237581092019 @default.
- W2023758109 countsByYear W20237581092020 @default.
- W2023758109 countsByYear W20237581092021 @default.
- W2023758109 crossrefType "journal-article" @default.
- W2023758109 hasAuthorship W2023758109A5005853546 @default.
- W2023758109 hasAuthorship W2023758109A5006350859 @default.
- W2023758109 hasAuthorship W2023758109A5056896229 @default.
- W2023758109 hasAuthorship W2023758109A5080552139 @default.
- W2023758109 hasAuthorship W2023758109A5085007022 @default.
- W2023758109 hasAuthorship W2023758109A5089646031 @default.
- W2023758109 hasConcept C121332964 @default.
- W2023758109 hasConcept C124961601 @default.
- W2023758109 hasConcept C127313418 @default.
- W2023758109 hasConcept C127592171 @default.
- W2023758109 hasConcept C153294291 @default.
- W2023758109 hasConcept C159985019 @default.