Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023760150> ?p ?o ?g. }
- W2023760150 endingPage "372" @default.
- W2023760150 startingPage "363" @default.
- W2023760150 abstract "In the present work, a knowledge-based system is developed for the prediction of surface roughness in turning process. Neural networks and fuzzy set theory are used for this purpose. Knowledge acquired from the shop floor is used to train the neural network. The trained network provides a number of data sets, which are fed to a fuzzy-set-based rule generation module. A large number of IF–THEN rules are generated, which can be reduced to a smaller set of rules by using Boolean operations. The developed rule base may be used for predicting surface roughness for given process variables as well as for the prediction of process variables for a given surface roughness. The concise set of rules helps the user in understanding the behavior of the cutting process and to assess the effectiveness of the model. The performance of the developed knowledge-based system is studied with the experimental data of dry and wet turning of mild steel with HSS and carbide tools." @default.
- W2023760150 created "2016-06-24" @default.
- W2023760150 creator A5024232542 @default.
- W2023760150 creator A5037693911 @default.
- W2023760150 date "2006-08-01" @default.
- W2023760150 modified "2023-10-14" @default.
- W2023760150 title "A knowledge-based system for the prediction of surface roughness in turning process" @default.
- W2023760150 cites W1969069199 @default.
- W2023760150 cites W1982518978 @default.
- W2023760150 cites W1986372163 @default.
- W2023760150 cites W2014042018 @default.
- W2023760150 cites W2016143777 @default.
- W2023760150 cites W2028821199 @default.
- W2023760150 cites W2036837388 @default.
- W2023760150 cites W2041280856 @default.
- W2023760150 cites W2043629449 @default.
- W2023760150 cites W2047941043 @default.
- W2023760150 cites W2048167874 @default.
- W2023760150 cites W2062154476 @default.
- W2023760150 cites W2064989429 @default.
- W2023760150 cites W2068321321 @default.
- W2023760150 cites W2082073455 @default.
- W2023760150 cites W2088203270 @default.
- W2023760150 cites W2100249710 @default.
- W2023760150 cites W2121753122 @default.
- W2023760150 cites W4244296837 @default.
- W2023760150 cites W71058195 @default.
- W2023760150 doi "https://doi.org/10.1016/j.rcim.2005.08.002" @default.
- W2023760150 hasPublicationYear "2006" @default.
- W2023760150 type Work @default.
- W2023760150 sameAs 2023760150 @default.
- W2023760150 citedByCount "122" @default.
- W2023760150 countsByYear W20237601502012 @default.
- W2023760150 countsByYear W20237601502013 @default.
- W2023760150 countsByYear W20237601502014 @default.
- W2023760150 countsByYear W20237601502015 @default.
- W2023760150 countsByYear W20237601502016 @default.
- W2023760150 countsByYear W20237601502017 @default.
- W2023760150 countsByYear W20237601502018 @default.
- W2023760150 countsByYear W20237601502019 @default.
- W2023760150 countsByYear W20237601502020 @default.
- W2023760150 countsByYear W20237601502021 @default.
- W2023760150 countsByYear W20237601502022 @default.
- W2023760150 countsByYear W20237601502023 @default.
- W2023760150 crossrefType "journal-article" @default.
- W2023760150 hasAuthorship W2023760150A5024232542 @default.
- W2023760150 hasAuthorship W2023760150A5037693911 @default.
- W2023760150 hasConcept C107365816 @default.
- W2023760150 hasConcept C111012933 @default.
- W2023760150 hasConcept C111919701 @default.
- W2023760150 hasConcept C119857082 @default.
- W2023760150 hasConcept C124101348 @default.
- W2023760150 hasConcept C154945302 @default.
- W2023760150 hasConcept C159985019 @default.
- W2023760150 hasConcept C177264268 @default.
- W2023760150 hasConcept C192562407 @default.
- W2023760150 hasConcept C199360897 @default.
- W2023760150 hasConcept C2780049643 @default.
- W2023760150 hasConcept C41008148 @default.
- W2023760150 hasConcept C42011625 @default.
- W2023760150 hasConcept C4554734 @default.
- W2023760150 hasConcept C50644808 @default.
- W2023760150 hasConcept C58166 @default.
- W2023760150 hasConcept C58328972 @default.
- W2023760150 hasConcept C98045186 @default.
- W2023760150 hasConceptScore W2023760150C107365816 @default.
- W2023760150 hasConceptScore W2023760150C111012933 @default.
- W2023760150 hasConceptScore W2023760150C111919701 @default.
- W2023760150 hasConceptScore W2023760150C119857082 @default.
- W2023760150 hasConceptScore W2023760150C124101348 @default.
- W2023760150 hasConceptScore W2023760150C154945302 @default.
- W2023760150 hasConceptScore W2023760150C159985019 @default.
- W2023760150 hasConceptScore W2023760150C177264268 @default.
- W2023760150 hasConceptScore W2023760150C192562407 @default.
- W2023760150 hasConceptScore W2023760150C199360897 @default.
- W2023760150 hasConceptScore W2023760150C2780049643 @default.
- W2023760150 hasConceptScore W2023760150C41008148 @default.
- W2023760150 hasConceptScore W2023760150C42011625 @default.
- W2023760150 hasConceptScore W2023760150C4554734 @default.
- W2023760150 hasConceptScore W2023760150C50644808 @default.
- W2023760150 hasConceptScore W2023760150C58166 @default.
- W2023760150 hasConceptScore W2023760150C58328972 @default.
- W2023760150 hasConceptScore W2023760150C98045186 @default.
- W2023760150 hasIssue "4" @default.
- W2023760150 hasLocation W20237601501 @default.
- W2023760150 hasOpenAccess W2023760150 @default.
- W2023760150 hasPrimaryLocation W20237601501 @default.
- W2023760150 hasRelatedWork W2002988189 @default.
- W2023760150 hasRelatedWork W2028812485 @default.
- W2023760150 hasRelatedWork W2060337370 @default.
- W2023760150 hasRelatedWork W2075669720 @default.
- W2023760150 hasRelatedWork W2076896173 @default.
- W2023760150 hasRelatedWork W2160897682 @default.
- W2023760150 hasRelatedWork W2393213238 @default.
- W2023760150 hasRelatedWork W3032982294 @default.
- W2023760150 hasRelatedWork W4239370390 @default.
- W2023760150 hasRelatedWork W2201969019 @default.
- W2023760150 hasVolume "22" @default.