Matches in SemOpenAlex for { <https://semopenalex.org/work/W202377773> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W202377773 endingPage "257" @default.
- W202377773 startingPage "235" @default.
- W202377773 abstract "Nuclear Engineering has matured during the last decade. In research & design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN’s can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN’s, statistical learning, eigen structure based processing and generalization structures." @default.
- W202377773 created "2016-06-24" @default.
- W202377773 creator A5014148109 @default.
- W202377773 date "2000-01-01" @default.
- W202377773 modified "2023-10-17" @default.
- W202377773 title "Neural Networks in Signal Processing" @default.
- W202377773 cites W1971488099 @default.
- W202377773 cites W1987030619 @default.
- W202377773 cites W1990405284 @default.
- W202377773 cites W2003078863 @default.
- W202377773 cites W2015470290 @default.
- W202377773 cites W2018632140 @default.
- W202377773 cites W2030748132 @default.
- W202377773 cites W2064129461 @default.
- W202377773 cites W2069879016 @default.
- W202377773 cites W2078376347 @default.
- W202377773 cites W2091886411 @default.
- W202377773 cites W2102201073 @default.
- W202377773 cites W2102897151 @default.
- W202377773 cites W2104877231 @default.
- W202377773 cites W2105594594 @default.
- W202377773 cites W2106231225 @default.
- W202377773 cites W2106304233 @default.
- W202377773 cites W2108384452 @default.
- W202377773 cites W2118247170 @default.
- W202377773 cites W2121606661 @default.
- W202377773 cites W2123716044 @default.
- W202377773 cites W4250621041 @default.
- W202377773 cites W65738273 @default.
- W202377773 cites W2104046780 @default.
- W202377773 doi "https://doi.org/10.1007/978-3-7908-1866-6_11" @default.
- W202377773 hasPublicationYear "2000" @default.
- W202377773 type Work @default.
- W202377773 sameAs 202377773 @default.
- W202377773 citedByCount "2" @default.
- W202377773 countsByYear W2023777732020 @default.
- W202377773 countsByYear W2023777732021 @default.
- W202377773 crossrefType "book-chapter" @default.
- W202377773 hasAuthorship W202377773A5014148109 @default.
- W202377773 hasConcept C102366305 @default.
- W202377773 hasConcept C104267543 @default.
- W202377773 hasConcept C105125183 @default.
- W202377773 hasConcept C105795698 @default.
- W202377773 hasConcept C111919701 @default.
- W202377773 hasConcept C119857082 @default.
- W202377773 hasConcept C134306372 @default.
- W202377773 hasConcept C154945302 @default.
- W202377773 hasConcept C177148314 @default.
- W202377773 hasConcept C199360897 @default.
- W202377773 hasConcept C202444582 @default.
- W202377773 hasConcept C2779843651 @default.
- W202377773 hasConcept C33923547 @default.
- W202377773 hasConcept C41008148 @default.
- W202377773 hasConcept C50644808 @default.
- W202377773 hasConcept C84462506 @default.
- W202377773 hasConcept C9390403 @default.
- W202377773 hasConcept C9652623 @default.
- W202377773 hasConcept C98045186 @default.
- W202377773 hasConceptScore W202377773C102366305 @default.
- W202377773 hasConceptScore W202377773C104267543 @default.
- W202377773 hasConceptScore W202377773C105125183 @default.
- W202377773 hasConceptScore W202377773C105795698 @default.
- W202377773 hasConceptScore W202377773C111919701 @default.
- W202377773 hasConceptScore W202377773C119857082 @default.
- W202377773 hasConceptScore W202377773C134306372 @default.
- W202377773 hasConceptScore W202377773C154945302 @default.
- W202377773 hasConceptScore W202377773C177148314 @default.
- W202377773 hasConceptScore W202377773C199360897 @default.
- W202377773 hasConceptScore W202377773C202444582 @default.
- W202377773 hasConceptScore W202377773C2779843651 @default.
- W202377773 hasConceptScore W202377773C33923547 @default.
- W202377773 hasConceptScore W202377773C41008148 @default.
- W202377773 hasConceptScore W202377773C50644808 @default.
- W202377773 hasConceptScore W202377773C84462506 @default.
- W202377773 hasConceptScore W202377773C9390403 @default.
- W202377773 hasConceptScore W202377773C9652623 @default.
- W202377773 hasConceptScore W202377773C98045186 @default.
- W202377773 hasLocation W2023777731 @default.
- W202377773 hasOpenAccess W202377773 @default.
- W202377773 hasPrimaryLocation W2023777731 @default.
- W202377773 hasRelatedWork W2111075373 @default.
- W202377773 hasRelatedWork W2885094885 @default.
- W202377773 hasRelatedWork W2961085424 @default.
- W202377773 hasRelatedWork W3046775127 @default.
- W202377773 hasRelatedWork W4285260836 @default.
- W202377773 hasRelatedWork W4286629047 @default.
- W202377773 hasRelatedWork W4306321456 @default.
- W202377773 hasRelatedWork W4306674287 @default.
- W202377773 hasRelatedWork W567856160 @default.
- W202377773 hasRelatedWork W4224009465 @default.
- W202377773 isParatext "false" @default.
- W202377773 isRetracted "false" @default.
- W202377773 magId "202377773" @default.
- W202377773 workType "book-chapter" @default.