Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023779506> ?p ?o ?g. }
- W2023779506 endingPage "3421" @default.
- W2023779506 startingPage "3402" @default.
- W2023779506 abstract "Dynamic classifier ensemble selection (DCES) plays a strategic role in the field of multiple classifier systems. The real data to be classified often include a large amount of noise, so it is important to study the noise-immunity ability of various DCES strategies. This paper introduces a group method of data handling (GMDH) to DCES, and proposes a novel dynamic classifier ensemble selection strategy GDES-AD. It considers both accuracy and diversity in the process of ensemble selection. We experimentally test GDES-AD and six other ensemble strategies over 30 UCI data sets in three cases: the data sets do not include artificial noise, include class noise, and include attribute noise. Statistical analysis results show that GDES-AD has stronger noise-immunity ability than other strategies. In addition, we find out that Random Subspace is more suitable for GDES-AD compared with Bagging. Further, the bias–variance decomposition experiments for the classification errors of various strategies show that the stronger noise-immunity ability of GDES-AD is mainly due to the fact that it can reduce the bias in classification error better." @default.
- W2023779506 created "2016-06-24" @default.
- W2023779506 creator A5022183918 @default.
- W2023779506 creator A5024316677 @default.
- W2023779506 creator A5068860197 @default.
- W2023779506 creator A5088778137 @default.
- W2023779506 date "2010-09-01" @default.
- W2023779506 modified "2023-10-16" @default.
- W2023779506 title "A dynamic classifier ensemble selection approach for noise data" @default.
- W2023779506 cites W1605688901 @default.
- W2023779506 cites W1967247902 @default.
- W2023779506 cites W1973445272 @default.
- W2023779506 cites W1974758710 @default.
- W2023779506 cites W1976186848 @default.
- W2023779506 cites W1981971464 @default.
- W2023779506 cites W1984879178 @default.
- W2023779506 cites W1989082727 @default.
- W2023779506 cites W1989203441 @default.
- W2023779506 cites W1991640459 @default.
- W2023779506 cites W1999835014 @default.
- W2023779506 cites W2000950277 @default.
- W2023779506 cites W2010712778 @default.
- W2023779506 cites W2016895553 @default.
- W2023779506 cites W2016944307 @default.
- W2023779506 cites W2025558839 @default.
- W2023779506 cites W2025754122 @default.
- W2023779506 cites W2027687340 @default.
- W2023779506 cites W2029772767 @default.
- W2023779506 cites W2034841618 @default.
- W2023779506 cites W2040280231 @default.
- W2023779506 cites W2042053856 @default.
- W2023779506 cites W2046602115 @default.
- W2023779506 cites W2051794358 @default.
- W2023779506 cites W2055178087 @default.
- W2023779506 cites W2055823751 @default.
- W2023779506 cites W2071458777 @default.
- W2023779506 cites W2076118331 @default.
- W2023779506 cites W2084357467 @default.
- W2023779506 cites W2085743868 @default.
- W2023779506 cites W2098154993 @default.
- W2023779506 cites W2100128988 @default.
- W2023779506 cites W2104013430 @default.
- W2023779506 cites W2112938554 @default.
- W2023779506 cites W2113242816 @default.
- W2023779506 cites W2115629999 @default.
- W2023779506 cites W2118756998 @default.
- W2023779506 cites W2125704083 @default.
- W2023779506 cites W2141014294 @default.
- W2023779506 cites W2145940431 @default.
- W2023779506 cites W2165335390 @default.
- W2023779506 cites W2169139688 @default.
- W2023779506 cites W3125903163 @default.
- W2023779506 cites W4212883601 @default.
- W2023779506 cites W4252684946 @default.
- W2023779506 doi "https://doi.org/10.1016/j.ins.2010.05.021" @default.
- W2023779506 hasPublicationYear "2010" @default.
- W2023779506 type Work @default.
- W2023779506 sameAs 2023779506 @default.
- W2023779506 citedByCount "66" @default.
- W2023779506 countsByYear W20237795062012 @default.
- W2023779506 countsByYear W20237795062013 @default.
- W2023779506 countsByYear W20237795062014 @default.
- W2023779506 countsByYear W20237795062015 @default.
- W2023779506 countsByYear W20237795062016 @default.
- W2023779506 countsByYear W20237795062017 @default.
- W2023779506 countsByYear W20237795062018 @default.
- W2023779506 countsByYear W20237795062019 @default.
- W2023779506 countsByYear W20237795062020 @default.
- W2023779506 countsByYear W20237795062021 @default.
- W2023779506 countsByYear W20237795062022 @default.
- W2023779506 countsByYear W20237795062023 @default.
- W2023779506 crossrefType "journal-article" @default.
- W2023779506 hasAuthorship W2023779506A5022183918 @default.
- W2023779506 hasAuthorship W2023779506A5024316677 @default.
- W2023779506 hasAuthorship W2023779506A5068860197 @default.
- W2023779506 hasAuthorship W2023779506A5088778137 @default.
- W2023779506 hasConcept C115961682 @default.
- W2023779506 hasConcept C119857082 @default.
- W2023779506 hasConcept C124101348 @default.
- W2023779506 hasConcept C153180895 @default.
- W2023779506 hasConcept C154945302 @default.
- W2023779506 hasConcept C32834561 @default.
- W2023779506 hasConcept C41008148 @default.
- W2023779506 hasConcept C45942800 @default.
- W2023779506 hasConcept C52620605 @default.
- W2023779506 hasConcept C95623464 @default.
- W2023779506 hasConcept C99498987 @default.
- W2023779506 hasConceptScore W2023779506C115961682 @default.
- W2023779506 hasConceptScore W2023779506C119857082 @default.
- W2023779506 hasConceptScore W2023779506C124101348 @default.
- W2023779506 hasConceptScore W2023779506C153180895 @default.
- W2023779506 hasConceptScore W2023779506C154945302 @default.
- W2023779506 hasConceptScore W2023779506C32834561 @default.
- W2023779506 hasConceptScore W2023779506C41008148 @default.
- W2023779506 hasConceptScore W2023779506C45942800 @default.
- W2023779506 hasConceptScore W2023779506C52620605 @default.
- W2023779506 hasConceptScore W2023779506C95623464 @default.
- W2023779506 hasConceptScore W2023779506C99498987 @default.