Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023787333> ?p ?o ?g. }
- W2023787333 endingPage "507" @default.
- W2023787333 startingPage "497" @default.
- W2023787333 abstract "The relationship between spatially distributed fMRI patterns and experimental stimuli or tasks offers insights into cognitive processes beyond those traceable from individual local activations. The multivariate properties of the fMRI signals allow us to infer interactions among individual regions and to detect distributed activations of multiple areas. Detection of task-specific multivariate activity in fMRI data is an important open problem that has drawn much interest recently. In this paper, we study and demonstrate the benefits of random forest classifiers and the associated Gini importance measure for selecting voxel subsets that form a multivariate neural response. The Gini importance measure quantifies the predictive power of a particular feature when considered as part of the entire pattern. The measure is based on a random sampling of fMRI time points and voxels. As a consequence the resulting voxel score, or Gini contrast, is highly reproducible and reliably includes all informative features. The method does not rely on a priori assumptions about the signal distribution, a specific statistical or functional model or regularization. Instead, it uses the predictive power of features to characterize their relevance for encoding task information. The Gini contrast offers an additional advantage of directly quantifying the task-relevant information in a multiclass setting, rather than reducing the problem to several binary classification subproblems. In a multicategory visual fMRI study, the proposed method identified informative regions not detected by the univariate criteria, such as the t-test or the F-test. Including these additional regions in the feature set improves the accuracy of multicategory classification. Moreover, we demonstrate higher classification accuracy and stability of the detected spatial patterns across runs than the traditional methods such as the recursive feature elimination used in conjunction with support vector machines." @default.
- W2023787333 created "2016-06-24" @default.
- W2023787333 creator A5002068604 @default.
- W2023787333 creator A5011614455 @default.
- W2023787333 creator A5060814361 @default.
- W2023787333 creator A5081763875 @default.
- W2023787333 date "2011-05-01" @default.
- W2023787333 modified "2023-10-11" @default.
- W2023787333 title "Detecting stable distributed patterns of brain activation using Gini contrast" @default.
- W2023787333 cites W1520812622 @default.
- W2023787333 cites W1619178479 @default.
- W2023787333 cites W1965654844 @default.
- W2023787333 cites W1979062697 @default.
- W2023787333 cites W1987869189 @default.
- W2023787333 cites W1988195734 @default.
- W2023787333 cites W1996031526 @default.
- W2023787333 cites W2006047855 @default.
- W2023787333 cites W2007483873 @default.
- W2023787333 cites W2007804187 @default.
- W2023787333 cites W2022613290 @default.
- W2023787333 cites W2028602316 @default.
- W2023787333 cites W2036084760 @default.
- W2023787333 cites W2041716195 @default.
- W2023787333 cites W2041837455 @default.
- W2023787333 cites W2041853331 @default.
- W2023787333 cites W2048631316 @default.
- W2023787333 cites W2056957254 @default.
- W2023787333 cites W2060144980 @default.
- W2023787333 cites W2073829263 @default.
- W2023787333 cites W2089632738 @default.
- W2023787333 cites W2092369570 @default.
- W2023787333 cites W2092829070 @default.
- W2023787333 cites W2095649738 @default.
- W2023787333 cites W2106664807 @default.
- W2023787333 cites W2112532472 @default.
- W2023787333 cites W2116328702 @default.
- W2023787333 cites W2116649573 @default.
- W2023787333 cites W2122210511 @default.
- W2023787333 cites W2123341385 @default.
- W2023787333 cites W2123923307 @default.
- W2023787333 cites W2123927491 @default.
- W2023787333 cites W2134585061 @default.
- W2023787333 cites W2136857199 @default.
- W2023787333 cites W2139906140 @default.
- W2023787333 cites W2143426320 @default.
- W2023787333 cites W2143481518 @default.
- W2023787333 cites W2158485497 @default.
- W2023787333 cites W2166048062 @default.
- W2023787333 cites W2166403493 @default.
- W2023787333 cites W2911964244 @default.
- W2023787333 cites W4231623949 @default.
- W2023787333 cites W4231923904 @default.
- W2023787333 cites W4380030747 @default.
- W2023787333 doi "https://doi.org/10.1016/j.neuroimage.2010.07.074" @default.
- W2023787333 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3960973" @default.
- W2023787333 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20709176" @default.
- W2023787333 hasPublicationYear "2011" @default.
- W2023787333 type Work @default.
- W2023787333 sameAs 2023787333 @default.
- W2023787333 citedByCount "59" @default.
- W2023787333 countsByYear W20237873332012 @default.
- W2023787333 countsByYear W20237873332013 @default.
- W2023787333 countsByYear W20237873332014 @default.
- W2023787333 countsByYear W20237873332015 @default.
- W2023787333 countsByYear W20237873332016 @default.
- W2023787333 countsByYear W20237873332017 @default.
- W2023787333 countsByYear W20237873332018 @default.
- W2023787333 countsByYear W20237873332019 @default.
- W2023787333 countsByYear W20237873332020 @default.
- W2023787333 countsByYear W20237873332021 @default.
- W2023787333 countsByYear W20237873332022 @default.
- W2023787333 countsByYear W20237873332023 @default.
- W2023787333 crossrefType "journal-article" @default.
- W2023787333 hasAuthorship W2023787333A5002068604 @default.
- W2023787333 hasAuthorship W2023787333A5011614455 @default.
- W2023787333 hasAuthorship W2023787333A5060814361 @default.
- W2023787333 hasAuthorship W2023787333A5081763875 @default.
- W2023787333 hasBestOaLocation W20237873332 @default.
- W2023787333 hasConcept C119857082 @default.
- W2023787333 hasConcept C136536468 @default.
- W2023787333 hasConcept C138885662 @default.
- W2023787333 hasConcept C153180895 @default.
- W2023787333 hasConcept C154945302 @default.
- W2023787333 hasConcept C15744967 @default.
- W2023787333 hasConcept C161584116 @default.
- W2023787333 hasConcept C169258074 @default.
- W2023787333 hasConcept C169760540 @default.
- W2023787333 hasConcept C199163554 @default.
- W2023787333 hasConcept C2776401178 @default.
- W2023787333 hasConcept C2776502983 @default.
- W2023787333 hasConcept C2779226451 @default.
- W2023787333 hasConcept C41008148 @default.
- W2023787333 hasConcept C41895202 @default.
- W2023787333 hasConcept C54170458 @default.
- W2023787333 hasConceptScore W2023787333C119857082 @default.
- W2023787333 hasConceptScore W2023787333C136536468 @default.
- W2023787333 hasConceptScore W2023787333C138885662 @default.
- W2023787333 hasConceptScore W2023787333C153180895 @default.