Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023796572> ?p ?o ?g. }
- W2023796572 endingPage "1759" @default.
- W2023796572 startingPage "1748" @default.
- W2023796572 abstract "Non-Gaussian spatial data are common in many sciences such as environmental sciences, biology and epidemiology. Spatial generalized linear mixed models (SGLMMs) are flexible models for modeling these types of data. Maximum likelihood estimation in SGLMMs is usually made cumbersome due to the high-dimensional intractable integrals involved in the likelihood function and therefore the most commonly used approach for estimating SGLMMs is based on the Bayesian approach. This paper proposes a computationally efficient strategy to fit SGLMMs based on the data cloning (DC) method suggested by Lele et al. (2007). This method uses Markov chain Monte Carlo simulations from an artificially constructed distribution to calculate the maximum likelihood estimates and their standard errors. In this paper, the DC method is adapted and generalized to estimate SGLMMs and some of its asymptotic properties are explored. Performance of the method is illustrated by a set of simulated binary and Poisson count data and also data about car accidents in Mashhad, Iran. The focus is inference in SGLMMs for small and medium data sets." @default.
- W2023796572 created "2016-06-24" @default.
- W2023796572 creator A5013393872 @default.
- W2023796572 creator A5068294955 @default.
- W2023796572 date "2011-04-01" @default.
- W2023796572 modified "2023-09-23" @default.
- W2023796572 title "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models" @default.
- W2023796572 cites W1485540258 @default.
- W2023796572 cites W1965804664 @default.
- W2023796572 cites W1968475514 @default.
- W2023796572 cites W1970431924 @default.
- W2023796572 cites W1975633784 @default.
- W2023796572 cites W2014079126 @default.
- W2023796572 cites W2029974256 @default.
- W2023796572 cites W2047014016 @default.
- W2023796572 cites W2077192207 @default.
- W2023796572 cites W2090692107 @default.
- W2023796572 cites W2094219605 @default.
- W2023796572 cites W2111418884 @default.
- W2023796572 cites W2122200228 @default.
- W2023796572 cites W2126704367 @default.
- W2023796572 cites W2138309709 @default.
- W2023796572 cites W2149174640 @default.
- W2023796572 cites W2151799505 @default.
- W2023796572 cites W2552605897 @default.
- W2023796572 cites W3101472415 @default.
- W2023796572 cites W4231718094 @default.
- W2023796572 cites W4237032073 @default.
- W2023796572 cites W4239683439 @default.
- W2023796572 cites W4243595379 @default.
- W2023796572 cites W4244611409 @default.
- W2023796572 cites W4245666426 @default.
- W2023796572 cites W4246833555 @default.
- W2023796572 cites W4248746343 @default.
- W2023796572 cites W4362227092 @default.
- W2023796572 doi "https://doi.org/10.1016/j.csda.2010.11.004" @default.
- W2023796572 hasPublicationYear "2011" @default.
- W2023796572 type Work @default.
- W2023796572 sameAs 2023796572 @default.
- W2023796572 citedByCount "23" @default.
- W2023796572 countsByYear W20237965722012 @default.
- W2023796572 countsByYear W20237965722013 @default.
- W2023796572 countsByYear W20237965722014 @default.
- W2023796572 countsByYear W20237965722015 @default.
- W2023796572 countsByYear W20237965722016 @default.
- W2023796572 countsByYear W20237965722017 @default.
- W2023796572 countsByYear W20237965722018 @default.
- W2023796572 countsByYear W20237965722019 @default.
- W2023796572 countsByYear W20237965722020 @default.
- W2023796572 countsByYear W20237965722021 @default.
- W2023796572 countsByYear W20237965722022 @default.
- W2023796572 crossrefType "journal-article" @default.
- W2023796572 hasAuthorship W2023796572A5013393872 @default.
- W2023796572 hasAuthorship W2023796572A5068294955 @default.
- W2023796572 hasConcept C100906024 @default.
- W2023796572 hasConcept C105795698 @default.
- W2023796572 hasConcept C107673813 @default.
- W2023796572 hasConcept C111350023 @default.
- W2023796572 hasConcept C11413529 @default.
- W2023796572 hasConcept C121332964 @default.
- W2023796572 hasConcept C126255220 @default.
- W2023796572 hasConcept C153720581 @default.
- W2023796572 hasConcept C154945302 @default.
- W2023796572 hasConcept C160234255 @default.
- W2023796572 hasConcept C163716315 @default.
- W2023796572 hasConcept C167928553 @default.
- W2023796572 hasConcept C182081679 @default.
- W2023796572 hasConcept C2776214188 @default.
- W2023796572 hasConcept C28826006 @default.
- W2023796572 hasConcept C33643355 @default.
- W2023796572 hasConcept C33923547 @default.
- W2023796572 hasConcept C41008148 @default.
- W2023796572 hasConcept C41587187 @default.
- W2023796572 hasConcept C49781872 @default.
- W2023796572 hasConcept C58489278 @default.
- W2023796572 hasConcept C62520636 @default.
- W2023796572 hasConcept C89106044 @default.
- W2023796572 hasConcept C91025261 @default.
- W2023796572 hasConceptScore W2023796572C100906024 @default.
- W2023796572 hasConceptScore W2023796572C105795698 @default.
- W2023796572 hasConceptScore W2023796572C107673813 @default.
- W2023796572 hasConceptScore W2023796572C111350023 @default.
- W2023796572 hasConceptScore W2023796572C11413529 @default.
- W2023796572 hasConceptScore W2023796572C121332964 @default.
- W2023796572 hasConceptScore W2023796572C126255220 @default.
- W2023796572 hasConceptScore W2023796572C153720581 @default.
- W2023796572 hasConceptScore W2023796572C154945302 @default.
- W2023796572 hasConceptScore W2023796572C160234255 @default.
- W2023796572 hasConceptScore W2023796572C163716315 @default.
- W2023796572 hasConceptScore W2023796572C167928553 @default.
- W2023796572 hasConceptScore W2023796572C182081679 @default.
- W2023796572 hasConceptScore W2023796572C2776214188 @default.
- W2023796572 hasConceptScore W2023796572C28826006 @default.
- W2023796572 hasConceptScore W2023796572C33643355 @default.
- W2023796572 hasConceptScore W2023796572C33923547 @default.
- W2023796572 hasConceptScore W2023796572C41008148 @default.
- W2023796572 hasConceptScore W2023796572C41587187 @default.
- W2023796572 hasConceptScore W2023796572C49781872 @default.