Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023807095> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2023807095 endingPage "2739" @default.
- W2023807095 startingPage "2709" @default.
- W2023807095 abstract "The notion of the Cousin complex of a module was given by Sharp in 1969. It wasn’t known whether its cohomologies are finitely generated until recently. In 2001, Dibaei and Tousi showed that the Cousin cohomologies of a finitely generated <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are finitely generated if the base ring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is local, has a dualizing complex, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies Serre’s <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper S 2 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(S_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-condition and is equidimensional. In the present article, the author improves their result. He shows that the Cousin cohomologies of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are finitely generated if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is universally catenary, all the formal fibers of all the localizations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are Cohen-Macaulay, the Cohen-Macaulay locus of each finitely generated <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra is open and all the localizations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are equidimensional. As a consequence of this, he gives a necessary and sufficient condition for a Noetherian ring to have an arithmetic Macaulayfication." @default.
- W2023807095 created "2016-06-24" @default.
- W2023807095 creator A5072540349 @default.
- W2023807095 date "2007-09-25" @default.
- W2023807095 modified "2023-10-16" @default.
- W2023807095 title "Finiteness of cousin cohomologies" @default.
- W2023807095 cites W1510183621 @default.
- W2023807095 cites W1542357592 @default.
- W2023807095 cites W1556711420 @default.
- W2023807095 cites W1560017775 @default.
- W2023807095 cites W1566925644 @default.
- W2023807095 cites W1718701227 @default.
- W2023807095 cites W17451547 @default.
- W2023807095 cites W1964823776 @default.
- W2023807095 cites W1967779590 @default.
- W2023807095 cites W1974437663 @default.
- W2023807095 cites W1978509887 @default.
- W2023807095 cites W1980978798 @default.
- W2023807095 cites W1988615702 @default.
- W2023807095 cites W2014898129 @default.
- W2023807095 cites W2019572406 @default.
- W2023807095 cites W2036011059 @default.
- W2023807095 cites W2062135761 @default.
- W2023807095 cites W2067806733 @default.
- W2023807095 cites W2096360987 @default.
- W2023807095 cites W2100479867 @default.
- W2023807095 cites W2132386263 @default.
- W2023807095 cites W2316969858 @default.
- W2023807095 cites W4206351227 @default.
- W2023807095 cites W4241189360 @default.
- W2023807095 doi "https://doi.org/10.1090/s0002-9947-07-04418-2" @default.
- W2023807095 hasPublicationYear "2007" @default.
- W2023807095 type Work @default.
- W2023807095 sameAs 2023807095 @default.
- W2023807095 citedByCount "15" @default.
- W2023807095 countsByYear W20238070952013 @default.
- W2023807095 countsByYear W20238070952015 @default.
- W2023807095 countsByYear W20238070952016 @default.
- W2023807095 countsByYear W20238070952018 @default.
- W2023807095 countsByYear W20238070952020 @default.
- W2023807095 countsByYear W20238070952021 @default.
- W2023807095 countsByYear W20238070952023 @default.
- W2023807095 crossrefType "journal-article" @default.
- W2023807095 hasAuthorship W2023807095A5072540349 @default.
- W2023807095 hasBestOaLocation W20238070951 @default.
- W2023807095 hasConcept C11413529 @default.
- W2023807095 hasConcept C154945302 @default.
- W2023807095 hasConcept C184337299 @default.
- W2023807095 hasConcept C18903297 @default.
- W2023807095 hasConcept C199360897 @default.
- W2023807095 hasConcept C2776321320 @default.
- W2023807095 hasConcept C2777299769 @default.
- W2023807095 hasConcept C33923547 @default.
- W2023807095 hasConcept C41008148 @default.
- W2023807095 hasConcept C86803240 @default.
- W2023807095 hasConceptScore W2023807095C11413529 @default.
- W2023807095 hasConceptScore W2023807095C154945302 @default.
- W2023807095 hasConceptScore W2023807095C184337299 @default.
- W2023807095 hasConceptScore W2023807095C18903297 @default.
- W2023807095 hasConceptScore W2023807095C199360897 @default.
- W2023807095 hasConceptScore W2023807095C2776321320 @default.
- W2023807095 hasConceptScore W2023807095C2777299769 @default.
- W2023807095 hasConceptScore W2023807095C33923547 @default.
- W2023807095 hasConceptScore W2023807095C41008148 @default.
- W2023807095 hasConceptScore W2023807095C86803240 @default.
- W2023807095 hasIssue "5" @default.
- W2023807095 hasLocation W20238070951 @default.
- W2023807095 hasOpenAccess W2023807095 @default.
- W2023807095 hasPrimaryLocation W20238070951 @default.
- W2023807095 hasRelatedWork W1529400504 @default.
- W2023807095 hasRelatedWork W1892467659 @default.
- W2023807095 hasRelatedWork W2045715842 @default.
- W2023807095 hasRelatedWork W2105880240 @default.
- W2023807095 hasRelatedWork W2349865494 @default.
- W2023807095 hasRelatedWork W2372553222 @default.
- W2023807095 hasRelatedWork W2808586768 @default.
- W2023807095 hasRelatedWork W2925832130 @default.
- W2023807095 hasRelatedWork W2998403542 @default.
- W2023807095 hasRelatedWork W3157620392 @default.
- W2023807095 hasVolume "360" @default.
- W2023807095 isParatext "false" @default.
- W2023807095 isRetracted "false" @default.
- W2023807095 magId "2023807095" @default.
- W2023807095 workType "article" @default.