Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023846740> ?p ?o ?g. }
- W2023846740 endingPage "452" @default.
- W2023846740 startingPage "421" @default.
- W2023846740 abstract "The observation that addition of a minute amount of flexible polymers to fluid reduces turbulent friction drag is well known. However, many aspects of this drag reduction phenomenon are not well understood; in particular, the origin of the maximum drag reduction (MDR) asymptote, a universal upper limit on drag reduction by polymers, remains an open question. This study focuses on the drag reduction phenomenon in the plane Poiseuille geometry in a parameter regime close to the laminar–turbulent transition. By minimizing the size of the periodic simulation box to the lower limit for which turbulence persists, the essential self-sustaining turbulent motions are isolated. In these ‘minimal flow unit’ (MFU) solutions, a series of qualitatively different stages consistent with previous experiments is observed, including an MDR stage where the mean flow rate is found to be invariant with respect to changing polymer-related parameters. Before the MDR stage, an additional transition exists between a relatively low degree (LDR) and a high degree (HDR) of drag reduction. This transition occurs at about 13%–15% of drag reduction and is characterized by a sudden increase in the minimal box size, as well as many qualitative changes in flow statistics. The observation of LDR–HDR transition at less than 15% drag reduction shows for the first time that it is a qualitative transition instead of a quantitative effect of the amount of drag reduction. Spatio-temporal flow structures change substantially upon this transition, suggesting that two distinct types of self-sustaining turbulent dynamics are observed. In LDR, as in Newtonian turbulence, the self-sustaining process involves one low-speed streak and its surrounding streamwise vortices; after the LDR–HDR transition, multiple streaks are present in the self-sustaining structure and complex intermittent behaviour of the streaks is observed. This multistage scenario of LDR–HDR–MDR recovers all key transitions commonly observed and studied at much higher Reynolds numbers." @default.
- W2023846740 created "2016-06-24" @default.
- W2023846740 creator A5023202198 @default.
- W2023846740 creator A5083407687 @default.
- W2023846740 date "2010-03-18" @default.
- W2023846740 modified "2023-09-30" @default.
- W2023846740 title "Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units" @default.
- W2023846740 cites W1579236455 @default.
- W2023846740 cites W1589702657 @default.
- W2023846740 cites W1628893287 @default.
- W2023846740 cites W1964321515 @default.
- W2023846740 cites W1975983578 @default.
- W2023846740 cites W1979176272 @default.
- W2023846740 cites W1982185580 @default.
- W2023846740 cites W1991476455 @default.
- W2023846740 cites W1996182315 @default.
- W2023846740 cites W1997232851 @default.
- W2023846740 cites W2000376889 @default.
- W2023846740 cites W2000398618 @default.
- W2023846740 cites W2002459245 @default.
- W2023846740 cites W2006892773 @default.
- W2023846740 cites W2007316486 @default.
- W2023846740 cites W2012969498 @default.
- W2023846740 cites W2021320519 @default.
- W2023846740 cites W2026359686 @default.
- W2023846740 cites W2033910942 @default.
- W2023846740 cites W2034112327 @default.
- W2023846740 cites W2037625087 @default.
- W2023846740 cites W2040057677 @default.
- W2023846740 cites W2046278305 @default.
- W2023846740 cites W2047048804 @default.
- W2023846740 cites W2051727375 @default.
- W2023846740 cites W2052310654 @default.
- W2023846740 cites W2056050935 @default.
- W2023846740 cites W2065852683 @default.
- W2023846740 cites W2066454569 @default.
- W2023846740 cites W2067000392 @default.
- W2023846740 cites W2069626283 @default.
- W2023846740 cites W2069948224 @default.
- W2023846740 cites W2075420101 @default.
- W2023846740 cites W2075853449 @default.
- W2023846740 cites W2083415044 @default.
- W2023846740 cites W2086442120 @default.
- W2023846740 cites W2096483659 @default.
- W2023846740 cites W2098379323 @default.
- W2023846740 cites W2099662911 @default.
- W2023846740 cites W2106570742 @default.
- W2023846740 cites W2117110156 @default.
- W2023846740 cites W2121467149 @default.
- W2023846740 cites W2124411387 @default.
- W2023846740 cites W2128387473 @default.
- W2023846740 cites W2137075874 @default.
- W2023846740 cites W2143389548 @default.
- W2023846740 cites W2152753188 @default.
- W2023846740 cites W2156242059 @default.
- W2023846740 cites W2157318080 @default.
- W2023846740 cites W2164954033 @default.
- W2023846740 cites W2170789058 @default.
- W2023846740 cites W2171663733 @default.
- W2023846740 cites W2250035585 @default.
- W2023846740 cites W3017082821 @default.
- W2023846740 cites W3099295172 @default.
- W2023846740 cites W3103856011 @default.
- W2023846740 cites W323536346 @default.
- W2023846740 cites W4298060601 @default.
- W2023846740 doi "https://doi.org/10.1017/s0022112010000066" @default.
- W2023846740 hasPublicationYear "2010" @default.
- W2023846740 type Work @default.
- W2023846740 sameAs 2023846740 @default.
- W2023846740 citedByCount "63" @default.
- W2023846740 countsByYear W20238467402012 @default.
- W2023846740 countsByYear W20238467402013 @default.
- W2023846740 countsByYear W20238467402014 @default.
- W2023846740 countsByYear W20238467402015 @default.
- W2023846740 countsByYear W20238467402016 @default.
- W2023846740 countsByYear W20238467402017 @default.
- W2023846740 countsByYear W20238467402018 @default.
- W2023846740 countsByYear W20238467402019 @default.
- W2023846740 countsByYear W20238467402020 @default.
- W2023846740 countsByYear W20238467402021 @default.
- W2023846740 countsByYear W20238467402022 @default.
- W2023846740 countsByYear W20238467402023 @default.
- W2023846740 crossrefType "journal-article" @default.
- W2023846740 hasAuthorship W2023846740A5023202198 @default.
- W2023846740 hasAuthorship W2023846740A5083407687 @default.
- W2023846740 hasConcept C111335779 @default.
- W2023846740 hasConcept C121332964 @default.
- W2023846740 hasConcept C16201104 @default.
- W2023846740 hasConcept C168907044 @default.
- W2023846740 hasConcept C196558001 @default.
- W2023846740 hasConcept C2524010 @default.
- W2023846740 hasConcept C33923547 @default.
- W2023846740 hasConcept C38349280 @default.
- W2023846740 hasConcept C57879066 @default.
- W2023846740 hasConcept C72117827 @default.
- W2023846740 hasConcept C72921944 @default.
- W2023846740 hasConcept C74650414 @default.
- W2023846740 hasConcept C76563973 @default.