Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023848035> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2023848035 endingPage "169" @default.
- W2023848035 startingPage "149" @default.
- W2023848035 abstract "Since topological algebra is the study of algebraic structures with topologies for which the operations are continuous, a natural question for the topological algebraist to ask is whether a given structure admits any such topologies whatever, other than the discrete and indiscrete ones. The question has been answered for some classes of structures. For example, Kertesz and Szele [7] prove that every infinite abelian group admits a nondiscrete, Hausdorff group On the other hand, Hanson [5] gives an example of an infinite groupoid which admits only the two trivial topologies mentioned above. Our purpose here is to answer this question for infinite fields, proving that every infinite field admits a nondiscrete, Hausdorff field This will be done by affirmatively answering the question for two classes of commutative rings: the first being all integral domains with a certain cardinality condition (§3), and the second, all rings which are the union of a chain of subrings with certain properties (§4). These two classes will be shown to include all infinite fields (§5). Our method of proof will make use of an procedure first used by Hinrichs [6] to prove the existence of certain unusual topologies on the integers. The procedure is described in §1, where we define what we mean by an inductive ring topology. In §§7 and 8, we turn our attention to some further applications of topologies, showing first how they can be used to construct interesting examples of topologies on the integers and rational numbers. We use them to get proofs that there are uncountably many, and non-first countable ring topologies on all the rings considered in §3 and §4. We also show how characterizations can be obtained for several classes of topologies on fields using modifications of the method. A supplement to our discussion of field topologies comes in §6, where we characterize those fields which admit nondiscrete, Hausdorff, locally bounded topologies. The methods used here, however, are those of valuation theory. When we say that a topology S~ is a ring topology on a ring A, we mean that the mappings (a, b)^-a—b and (a, b)-*ab from Ax A into A are continuous. &~ is a field topology on a field K if it is a ring topology, and in addition, the mapping a -*■ a'1 is continuous on K~{0}." @default.
- W2023848035 created "2016-06-24" @default.
- W2023848035 creator A5018732454 @default.
- W2023848035 date "1968-01-01" @default.
- W2023848035 modified "2023-09-23" @default.
- W2023848035 title "Inductive ring topologies" @default.
- W2023848035 cites W2330115157 @default.
- W2023848035 cites W4252159534 @default.
- W2023848035 cites W4255851204 @default.
- W2023848035 cites W4256503430 @default.
- W2023848035 cites W4313169178 @default.
- W2023848035 doi "https://doi.org/10.1090/s0002-9947-1968-0228474-6" @default.
- W2023848035 hasPublicationYear "1968" @default.
- W2023848035 type Work @default.
- W2023848035 sameAs 2023848035 @default.
- W2023848035 citedByCount "19" @default.
- W2023848035 countsByYear W20238480352016 @default.
- W2023848035 crossrefType "journal-article" @default.
- W2023848035 hasAuthorship W2023848035A5018732454 @default.
- W2023848035 hasBestOaLocation W20238480351 @default.
- W2023848035 hasConcept C114614502 @default.
- W2023848035 hasConcept C178790620 @default.
- W2023848035 hasConcept C184720557 @default.
- W2023848035 hasConcept C185592680 @default.
- W2023848035 hasConcept C199845137 @default.
- W2023848035 hasConcept C2780378348 @default.
- W2023848035 hasConcept C31258907 @default.
- W2023848035 hasConcept C33923547 @default.
- W2023848035 hasConcept C41008148 @default.
- W2023848035 hasConceptScore W2023848035C114614502 @default.
- W2023848035 hasConceptScore W2023848035C178790620 @default.
- W2023848035 hasConceptScore W2023848035C184720557 @default.
- W2023848035 hasConceptScore W2023848035C185592680 @default.
- W2023848035 hasConceptScore W2023848035C199845137 @default.
- W2023848035 hasConceptScore W2023848035C2780378348 @default.
- W2023848035 hasConceptScore W2023848035C31258907 @default.
- W2023848035 hasConceptScore W2023848035C33923547 @default.
- W2023848035 hasConceptScore W2023848035C41008148 @default.
- W2023848035 hasIssue "1" @default.
- W2023848035 hasLocation W20238480351 @default.
- W2023848035 hasOpenAccess W2023848035 @default.
- W2023848035 hasPrimaryLocation W20238480351 @default.
- W2023848035 hasRelatedWork W1915736549 @default.
- W2023848035 hasRelatedWork W2037571403 @default.
- W2023848035 hasRelatedWork W2047034166 @default.
- W2023848035 hasRelatedWork W2065801011 @default.
- W2023848035 hasRelatedWork W2085298677 @default.
- W2023848035 hasRelatedWork W2319843230 @default.
- W2023848035 hasRelatedWork W2946528590 @default.
- W2023848035 hasRelatedWork W3002866540 @default.
- W2023848035 hasRelatedWork W3023248791 @default.
- W2023848035 hasRelatedWork W4323547220 @default.
- W2023848035 hasVolume "134" @default.
- W2023848035 isParatext "false" @default.
- W2023848035 isRetracted "false" @default.
- W2023848035 magId "2023848035" @default.
- W2023848035 workType "article" @default.