Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023871391> ?p ?o ?g. }
- W2023871391 abstract "The Gowdy cosmologies are vacuum solutions to the Einstein equations which possess two space-like Killing vectors and whose spatial sections are compact. We consider the simplest of these cosmological models: the case where the spatial topology is that of a three-torus and the gravitational waves are linearly polarized. The subset of homogeneous solutions to this Gowdy model are vacuum Bianchi I spacetimes with a three-torus topology. We deepen the analysis of the loop quantization of these Bianchi I universes adopting the improved dynamics scheme put forward recently by Ashtekar and Wilson-Ewing. Then, we revisit the hybrid quantization of the Gowdy $T^3$ cosmologies by combining this loop quantum cosmology description with a Fock quantization of the inhomogeneities over the homogeneous Bianchi I background. We show that, in vacuo, the Hamiltonian constraint of both the Bianchi I and the Gowdy models can be regarded as an evolution equation with respect to the volume of the Bianchi I universe. This evolution variable turns out to be discrete, with a strictly positive minimum. Furthermore, we argue that this evolution is well-defined inasmuch as the associated initial value problem is well posed: physical solutions are completely determined by the data on an initial section of constant Bianchi I volume. This fact allows us to carry out to completion the quantization of these two cosmological models." @default.
- W2023871391 created "2016-06-24" @default.
- W2023871391 creator A5008108309 @default.
- W2023871391 creator A5076741276 @default.
- W2023871391 creator A5077839577 @default.
- W2023871391 date "2010-10-07" @default.
- W2023871391 modified "2023-10-18" @default.
- W2023871391 title "Hybrid quantization: From Bianchi I to the Gowdy model" @default.
- W2023871391 cites W1500309863 @default.
- W2023871391 cites W1838380013 @default.
- W2023871391 cites W1947273351 @default.
- W2023871391 cites W1969707321 @default.
- W2023871391 cites W1975511018 @default.
- W2023871391 cites W1975600559 @default.
- W2023871391 cites W1975671855 @default.
- W2023871391 cites W1976567768 @default.
- W2023871391 cites W1980794298 @default.
- W2023871391 cites W1985122228 @default.
- W2023871391 cites W2007210014 @default.
- W2023871391 cites W2010106678 @default.
- W2023871391 cites W2015470594 @default.
- W2023871391 cites W2022504944 @default.
- W2023871391 cites W2027554361 @default.
- W2023871391 cites W2039657334 @default.
- W2023871391 cites W2045294300 @default.
- W2023871391 cites W2050013107 @default.
- W2023871391 cites W2052242781 @default.
- W2023871391 cites W2060435797 @default.
- W2023871391 cites W2061134346 @default.
- W2023871391 cites W2068703106 @default.
- W2023871391 cites W2070707213 @default.
- W2023871391 cites W2073295501 @default.
- W2023871391 cites W2077571114 @default.
- W2023871391 cites W2077675667 @default.
- W2023871391 cites W2078045762 @default.
- W2023871391 cites W2082765644 @default.
- W2023871391 cites W2084080701 @default.
- W2023871391 cites W2086280621 @default.
- W2023871391 cites W2087690346 @default.
- W2023871391 cites W2088564216 @default.
- W2023871391 cites W2097980591 @default.
- W2023871391 cites W2101065856 @default.
- W2023871391 cites W2105991089 @default.
- W2023871391 cites W2118657390 @default.
- W2023871391 cites W2122629810 @default.
- W2023871391 cites W2138185025 @default.
- W2023871391 cites W2145511126 @default.
- W2023871391 cites W2149289292 @default.
- W2023871391 cites W2159485102 @default.
- W2023871391 cites W2167472975 @default.
- W2023871391 cites W2168462986 @default.
- W2023871391 cites W23193668 @default.
- W2023871391 cites W2591900937 @default.
- W2023871391 cites W3100461120 @default.
- W2023871391 cites W3101437371 @default.
- W2023871391 cites W3104705475 @default.
- W2023871391 cites W3105635182 @default.
- W2023871391 cites W3106348634 @default.
- W2023871391 cites W3125886474 @default.
- W2023871391 cites W3140108705 @default.
- W2023871391 cites W4210986517 @default.
- W2023871391 cites W4233500204 @default.
- W2023871391 cites W4234378811 @default.
- W2023871391 doi "https://doi.org/10.1103/physrevd.82.084012" @default.
- W2023871391 hasPublicationYear "2010" @default.
- W2023871391 type Work @default.
- W2023871391 sameAs 2023871391 @default.
- W2023871391 citedByCount "73" @default.
- W2023871391 countsByYear W20238713912012 @default.
- W2023871391 countsByYear W20238713912013 @default.
- W2023871391 countsByYear W20238713912014 @default.
- W2023871391 countsByYear W20238713912015 @default.
- W2023871391 countsByYear W20238713912016 @default.
- W2023871391 countsByYear W20238713912017 @default.
- W2023871391 countsByYear W20238713912018 @default.
- W2023871391 countsByYear W20238713912019 @default.
- W2023871391 countsByYear W20238713912020 @default.
- W2023871391 countsByYear W20238713912021 @default.
- W2023871391 countsByYear W20238713912022 @default.
- W2023871391 countsByYear W20238713912023 @default.
- W2023871391 crossrefType "journal-article" @default.
- W2023871391 hasAuthorship W2023871391A5008108309 @default.
- W2023871391 hasAuthorship W2023871391A5076741276 @default.
- W2023871391 hasAuthorship W2023871391A5077839577 @default.
- W2023871391 hasBestOaLocation W20238713912 @default.
- W2023871391 hasConcept C108568745 @default.
- W2023871391 hasConcept C114852677 @default.
- W2023871391 hasConcept C121332964 @default.
- W2023871391 hasConcept C124017977 @default.
- W2023871391 hasConcept C147452769 @default.
- W2023871391 hasConcept C158913796 @default.
- W2023871391 hasConcept C166861157 @default.
- W2023871391 hasConcept C2524010 @default.
- W2023871391 hasConcept C26405456 @default.
- W2023871391 hasConcept C2778267785 @default.
- W2023871391 hasConcept C28855332 @default.
- W2023871391 hasConcept C2992891135 @default.
- W2023871391 hasConcept C31972630 @default.
- W2023871391 hasConcept C33332235 @default.
- W2023871391 hasConcept C33923547 @default.