Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023872811> ?p ?o ?g. }
- W2023872811 endingPage "201" @default.
- W2023872811 startingPage "119" @default.
- W2023872811 abstract "Abstract This review is addressed to colleagues working in different fields of physics who are interested in the concepts of microcanonical thermodynamics, its relation and contrast to ordinary, canonical or grandcanonical thermodynamics, and to get a first taste of the wide area of new applications of thermodynamical concepts like hot nuclei, hot atomic clusters and gravitating systems. Microcanonical thermodynamics describes how the volume of the N-body phase space depends on the globally conserved quantities like energy, angular momentum, mass, charge, etc. Due to these constraints the microcanonical ensemble can behave quite differently from the conventional, canonical or grandcanonical ensemble in many important physical systems. Microcanonical systems become inhomogeneous at first-order phase transitions, or with rising energy, or with external or internal long-range forces like Coulomb, centrifugal or gravitational forces. Thus, fragmentation of the system into a spatially inhomogeneous distribution of various regions of different densities and/or of different phases is a genuine characteristic of the microcanonical ensemble. In these cases which are realized by the majority of realistic systems in nature, the microcanonical approach is the natural statistical description. We investigate this most fundamental form of thermodynamics in four different nontrivial physical cases: 1. (I) Microcanonical phase transitions of first and second order are studied within the Potts model. The total energy per particle is a nonfluctuating order parameter which controls the phase which the system is in. In contrast to the canonical form the microcanonical ensemble allows to tune the system continuously from one phase to the other through the region of coexisting phases by changing the energy smoothly. The configurations of coexisting phases carry important informations about the nature of the phase transition. This is more remarkable as the canonical ensemble is blind against these configurations. It is shown that the three basic quantities which specify a phase transition of first order — Transition temperature, latent heat, and interphase surface entropy — can be well determined for finite systems from the caloric equation of state T(E) in the coexistence region. Their values are already for a lattice of only ~ 30 ∗ 30 spins close to the ones of the corresponding infinite system. The significance of the backbending of the caloric equation of state T(E) is clarified. It is the signal for a phase transition of first order in a finite isolated system. 2. (II) Fragmentation is shown to be a specific and generic phase transition of finite systems. The caloric equation of state T(E) for hot nuclei is calculated. The phase transition towards fragmentation can unambiguously be identified by the anomalies in T(E). As microcanonical thermodynamics is a full N-body theory it determines all many-body correlations as well. Consequently, various statistical multi-fragment correlations are investigated which give insight into the details of the equilibration mechanism. 3. (III) Fragmentation of neutral and multiply charged atomic clusters is the next example of a realistic application of microcanonical thermodynamics. Our simulation method, microcanonical Metropolis Monte Carlo, combines the explicit microscopic treatment of the fragmentational degrees of freedom with the implicit treatment of the internal degrees of freedom of the fragments described by the experimental bulk specific heat. This micro-macro approach allows us to study the fragmentation of also larger fragments. Characteristic details of the fission of multiply charged metal clusters find their explanation by the different bulk properties. 4. (IV) Finally, the fragmentation of strongly rotating nuclei is discussed as an example for a microcanonical ensemble under the action of a two-dimensional repulsive force." @default.
- W2023872811 created "2016-06-24" @default.
- W2023872811 creator A5021126241 @default.
- W2023872811 date "1997-01-01" @default.
- W2023872811 modified "2023-10-14" @default.
- W2023872811 title "Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space" @default.
- W2023872811 cites W1512463358 @default.
- W2023872811 cites W1589507342 @default.
- W2023872811 cites W1968441339 @default.
- W2023872811 cites W1968975312 @default.
- W2023872811 cites W1978478148 @default.
- W2023872811 cites W1980807995 @default.
- W2023872811 cites W1989416600 @default.
- W2023872811 cites W1989988452 @default.
- W2023872811 cites W1994526851 @default.
- W2023872811 cites W1994616521 @default.
- W2023872811 cites W2009251915 @default.
- W2023872811 cites W2009688700 @default.
- W2023872811 cites W2014208555 @default.
- W2023872811 cites W2014707615 @default.
- W2023872811 cites W2014727326 @default.
- W2023872811 cites W2015161136 @default.
- W2023872811 cites W2021198715 @default.
- W2023872811 cites W2022912809 @default.
- W2023872811 cites W2023097252 @default.
- W2023872811 cites W2029514474 @default.
- W2023872811 cites W2034818776 @default.
- W2023872811 cites W2037139490 @default.
- W2023872811 cites W2038054551 @default.
- W2023872811 cites W2038551888 @default.
- W2023872811 cites W2039584597 @default.
- W2023872811 cites W2043695984 @default.
- W2023872811 cites W2045054498 @default.
- W2023872811 cites W2046002177 @default.
- W2023872811 cites W2046013688 @default.
- W2023872811 cites W2051148049 @default.
- W2023872811 cites W2052555599 @default.
- W2023872811 cites W2073947327 @default.
- W2023872811 cites W2080132440 @default.
- W2023872811 cites W2086051317 @default.
- W2023872811 cites W2125838758 @default.
- W2023872811 cites W2130833006 @default.
- W2023872811 cites W2132905138 @default.
- W2023872811 cites W2142103642 @default.
- W2023872811 cites W2147632348 @default.
- W2023872811 cites W2163932869 @default.
- W2023872811 cites W2330548796 @default.
- W2023872811 cites W649846466 @default.
- W2023872811 doi "https://doi.org/10.1016/s0370-1573(96)00024-5" @default.
- W2023872811 hasPublicationYear "1997" @default.
- W2023872811 type Work @default.
- W2023872811 sameAs 2023872811 @default.
- W2023872811 citedByCount "281" @default.
- W2023872811 countsByYear W20238728112012 @default.
- W2023872811 countsByYear W20238728112013 @default.
- W2023872811 countsByYear W20238728112014 @default.
- W2023872811 countsByYear W20238728112015 @default.
- W2023872811 countsByYear W20238728112016 @default.
- W2023872811 countsByYear W20238728112017 @default.
- W2023872811 countsByYear W20238728112018 @default.
- W2023872811 countsByYear W20238728112019 @default.
- W2023872811 countsByYear W20238728112020 @default.
- W2023872811 countsByYear W20238728112021 @default.
- W2023872811 countsByYear W20238728112022 @default.
- W2023872811 countsByYear W20238728112023 @default.
- W2023872811 crossrefType "journal-article" @default.
- W2023872811 hasAuthorship W2023872811A5021126241 @default.
- W2023872811 hasConcept C101683677 @default.
- W2023872811 hasConcept C105236789 @default.
- W2023872811 hasConcept C105795698 @default.
- W2023872811 hasConcept C121332964 @default.
- W2023872811 hasConcept C121864883 @default.
- W2023872811 hasConcept C138885662 @default.
- W2023872811 hasConcept C151342819 @default.
- W2023872811 hasConcept C19499675 @default.
- W2023872811 hasConcept C2778572836 @default.
- W2023872811 hasConcept C28556851 @default.
- W2023872811 hasConcept C31555180 @default.
- W2023872811 hasConcept C33332235 @default.
- W2023872811 hasConcept C33923547 @default.
- W2023872811 hasConcept C41895202 @default.
- W2023872811 hasConcept C43933239 @default.
- W2023872811 hasConcept C74650414 @default.
- W2023872811 hasConcept C78032018 @default.
- W2023872811 hasConcept C97355855 @default.
- W2023872811 hasConcept C99692599 @default.
- W2023872811 hasConceptScore W2023872811C101683677 @default.
- W2023872811 hasConceptScore W2023872811C105236789 @default.
- W2023872811 hasConceptScore W2023872811C105795698 @default.
- W2023872811 hasConceptScore W2023872811C121332964 @default.
- W2023872811 hasConceptScore W2023872811C121864883 @default.
- W2023872811 hasConceptScore W2023872811C138885662 @default.
- W2023872811 hasConceptScore W2023872811C151342819 @default.
- W2023872811 hasConceptScore W2023872811C19499675 @default.
- W2023872811 hasConceptScore W2023872811C2778572836 @default.
- W2023872811 hasConceptScore W2023872811C28556851 @default.
- W2023872811 hasConceptScore W2023872811C31555180 @default.
- W2023872811 hasConceptScore W2023872811C33332235 @default.