Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023876635> ?p ?o ?g. }
- W2023876635 endingPage "495" @default.
- W2023876635 startingPage "488" @default.
- W2023876635 abstract "Abstract Significant and continual improvements in upstream processing for biologics have resulted in challenges for downstream processing, both primary recovery and purification ( 1 ). Given the high cell densities achievable in both microbial and mammalian cell culture processes, primary recovery can be a significant bottleneck in both clinical and commercial manufacturing. The combination of increased product titer and low viability leads to significant relative increases in the levels of process impurities such as lipids, intracellular proteins and nucleic acid versus the product. In addition, cell culture media components such as soy and yeast hydrolysates have been widely applied to achieve the cell culture densities needed for higher titers ( 2 , 3 ). Many of the process impurities can be negatively charged at harvest pH and can form colloids during the cell culture and harvest processes. The wide size distribution of these particles and the potential for additional particles to be generated by shear forces within a centrifuge may result in insufficient clarification to prevent fouling of subsequent filters. The other residual process impurities can lead to precipitation and increased turbidity during processing and even interference with the performance of the capturing chromatographic step. Primary recovery also poses significant challenges owing to the necessity to execute in an expedient manner to minimize both product degradation and bioburden concerns. Both microfiltration and centrifugation coupled with depth filtration have been employed successfully as primary recovery processing steps. Advances in the design and application of membrane technology for microfiltration and dead‐end filtration have contributed to significant improvements in process performance and integration, in some cases allowing for a combination of multiple unit operations in a given step. Although these advances have increased productivity and reliability, the net result is that optimization of primary recovery processes has become substantially more complicated. Ironically, the application of classical chemical engineering approaches to overcome issues in primary recovery and purification (e.g., turbidity and trace impurity removal) are just recently gaining attention ( 4 ). Some of these techniques (e.g., membrane cascades, pretreatment, precipitation, and the use of affinity tags) are now seen almost as disruptive technologies ( 5 ). This paper will review the current and potential future state of research on primary recovery, including relevant papers presented at the 234th American Chemical Society (ACS) National Meeting in Boston." @default.
- W2023876635 created "2016-06-24" @default.
- W2023876635 creator A5058448395 @default.
- W2023876635 creator A5064339880 @default.
- W2023876635 date "2008-05-01" @default.
- W2023876635 modified "2023-10-15" @default.
- W2023876635 title "Advances in Primary Recovery: Centrifugation and Membrane Technology" @default.
- W2023876635 cites W1493164660 @default.
- W2023876635 cites W1585784812 @default.
- W2023876635 cites W1968723216 @default.
- W2023876635 cites W1969758467 @default.
- W2023876635 cites W1985679694 @default.
- W2023876635 cites W1986664732 @default.
- W2023876635 cites W1987328338 @default.
- W2023876635 cites W1987920176 @default.
- W2023876635 cites W2004929411 @default.
- W2023876635 cites W2010904098 @default.
- W2023876635 cites W2012325658 @default.
- W2023876635 cites W2022280863 @default.
- W2023876635 cites W2025559460 @default.
- W2023876635 cites W2029341586 @default.
- W2023876635 cites W2037551042 @default.
- W2023876635 cites W2056621656 @default.
- W2023876635 cites W2063234820 @default.
- W2023876635 cites W2070075540 @default.
- W2023876635 cites W2077965850 @default.
- W2023876635 cites W2082568784 @default.
- W2023876635 cites W2088241294 @default.
- W2023876635 cites W2092716475 @default.
- W2023876635 cites W2098310507 @default.
- W2023876635 cites W2101600162 @default.
- W2023876635 cites W2112813980 @default.
- W2023876635 cites W2159334408 @default.
- W2023876635 doi "https://doi.org/10.1021/bp070414x" @default.
- W2023876635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18410157" @default.
- W2023876635 hasPublicationYear "2008" @default.
- W2023876635 type Work @default.
- W2023876635 sameAs 2023876635 @default.
- W2023876635 citedByCount "114" @default.
- W2023876635 countsByYear W20238766352012 @default.
- W2023876635 countsByYear W20238766352013 @default.
- W2023876635 countsByYear W20238766352014 @default.
- W2023876635 countsByYear W20238766352015 @default.
- W2023876635 countsByYear W20238766352016 @default.
- W2023876635 countsByYear W20238766352017 @default.
- W2023876635 countsByYear W20238766352018 @default.
- W2023876635 countsByYear W20238766352019 @default.
- W2023876635 countsByYear W20238766352020 @default.
- W2023876635 countsByYear W20238766352021 @default.
- W2023876635 countsByYear W20238766352022 @default.
- W2023876635 countsByYear W20238766352023 @default.
- W2023876635 crossrefType "journal-article" @default.
- W2023876635 hasAuthorship W2023876635A5058448395 @default.
- W2023876635 hasAuthorship W2023876635A5064339880 @default.
- W2023876635 hasBestOaLocation W20238766351 @default.
- W2023876635 hasConcept C105795698 @default.
- W2023876635 hasConcept C115792997 @default.
- W2023876635 hasConcept C127413603 @default.
- W2023876635 hasConcept C128489963 @default.
- W2023876635 hasConcept C148815931 @default.
- W2023876635 hasConcept C178790620 @default.
- W2023876635 hasConcept C180461467 @default.
- W2023876635 hasConcept C185592680 @default.
- W2023876635 hasConcept C18743360 @default.
- W2023876635 hasConcept C21880701 @default.
- W2023876635 hasConcept C33923547 @default.
- W2023876635 hasConcept C41625074 @default.
- W2023876635 hasConcept C43617362 @default.
- W2023876635 hasConcept C48314217 @default.
- W2023876635 hasConcept C528095902 @default.
- W2023876635 hasConcept C53163501 @default.
- W2023876635 hasConcept C55493867 @default.
- W2023876635 hasConcept C67568554 @default.
- W2023876635 hasConcept C7623868 @default.
- W2023876635 hasConceptScore W2023876635C105795698 @default.
- W2023876635 hasConceptScore W2023876635C115792997 @default.
- W2023876635 hasConceptScore W2023876635C127413603 @default.
- W2023876635 hasConceptScore W2023876635C128489963 @default.
- W2023876635 hasConceptScore W2023876635C148815931 @default.
- W2023876635 hasConceptScore W2023876635C178790620 @default.
- W2023876635 hasConceptScore W2023876635C180461467 @default.
- W2023876635 hasConceptScore W2023876635C185592680 @default.
- W2023876635 hasConceptScore W2023876635C18743360 @default.
- W2023876635 hasConceptScore W2023876635C21880701 @default.
- W2023876635 hasConceptScore W2023876635C33923547 @default.
- W2023876635 hasConceptScore W2023876635C41625074 @default.
- W2023876635 hasConceptScore W2023876635C43617362 @default.
- W2023876635 hasConceptScore W2023876635C48314217 @default.
- W2023876635 hasConceptScore W2023876635C528095902 @default.
- W2023876635 hasConceptScore W2023876635C53163501 @default.
- W2023876635 hasConceptScore W2023876635C55493867 @default.
- W2023876635 hasConceptScore W2023876635C67568554 @default.
- W2023876635 hasConceptScore W2023876635C7623868 @default.
- W2023876635 hasIssue "3" @default.
- W2023876635 hasLocation W20238766351 @default.
- W2023876635 hasLocation W20238766352 @default.
- W2023876635 hasOpenAccess W2023876635 @default.
- W2023876635 hasPrimaryLocation W20238766351 @default.