Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023915566> ?p ?o ?g. }
- W2023915566 endingPage "7672" @default.
- W2023915566 startingPage "7661" @default.
- W2023915566 abstract "Quantum noise is common in CT images and is a persistent problem in accurate ventilation imaging using 4D-CT and deformable image registration (DIR). This study focuses on the effects of noise in 4D-CT on DIR and thereby derived ventilation data. A total of six sets of 4D-CT data with landmarks delineated in different phases, called point-validated pixel-based breathing thorax models (POPI), were used in this study. The DIR algorithms, including diffeomorphic morphons (DM), diffeomorphic demons (DD), optical flow and B-spline, were used to register the inspiration phase to the expiration phase. The DIR deformation matrices (DIRDM) were used to map the landmarks. Target registration errors (TRE) were calculated as the distance errors between the delineated and the mapped landmarks. Noise of Gaussian distribution with different standard deviations (SD), from 0 to 200 Hounsfield Units (HU) in amplitude, was added to the POPI models to simulate different levels of quantum noise. Ventilation data were calculated using the ΔV algorithm which calculates the volume change geometrically based on the DIRDM. The ventilation images with different added noise levels were compared using Dice similarity coefficient (DSC). The root mean square (RMS) values of the landmark TRE over the six POPI models for the four DIR algorithms were stable when the noise level was low (SD <150 HU) and increased with added noise when the level is higher. The most accurate DIR was DD with a mean RMS of 1.5 ± 0.5 mm with no added noise and 1.8 ± 0.5 mm with noise (SD = 200 HU). The DSC values between the ventilation images with and without added noise decreased with the noise level, even when the noise level was relatively low. The DIR algorithm most robust with respect to noise was DM, with mean DSC = 0.89 ± 0.01 and 0.66 ± 0.02 for the top 50% ventilation volumes, as compared between 0 added noise and SD = 30 and 200 HU, respectively. Although the landmark TRE were stable with low noise, the differences between ventilation images increased with noise level, even when the noise was low, indicating ventilation imaging from 4D-CT was sensitive to image noise. Therefore, high quality 4D-CT is essential for accurate ventilation images." @default.
- W2023915566 created "2016-06-24" @default.
- W2023915566 creator A5013513157 @default.
- W2023915566 creator A5038597614 @default.
- W2023915566 creator A5047495544 @default.
- W2023915566 creator A5051781634 @default.
- W2023915566 creator A5055888843 @default.
- W2023915566 creator A5057987192 @default.
- W2023915566 creator A5065959120 @default.
- W2023915566 creator A5089146739 @default.
- W2023915566 creator A5089476321 @default.
- W2023915566 creator A5090807936 @default.
- W2023915566 date "2013-10-11" @default.
- W2023915566 modified "2023-10-16" @default.
- W2023915566 title "Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data" @default.
- W2023915566 cites W1553237896 @default.
- W2023915566 cites W1975074047 @default.
- W2023915566 cites W1985587133 @default.
- W2023915566 cites W1987282785 @default.
- W2023915566 cites W1987869189 @default.
- W2023915566 cites W1989413706 @default.
- W2023915566 cites W1990885164 @default.
- W2023915566 cites W1994940711 @default.
- W2023915566 cites W1999943970 @default.
- W2023915566 cites W2006034462 @default.
- W2023915566 cites W2006244857 @default.
- W2023915566 cites W2007638243 @default.
- W2023915566 cites W2018079248 @default.
- W2023915566 cites W2020133147 @default.
- W2023915566 cites W2045260373 @default.
- W2023915566 cites W2049647519 @default.
- W2023915566 cites W2053688176 @default.
- W2023915566 cites W2056617450 @default.
- W2023915566 cites W2067598514 @default.
- W2023915566 cites W2077395758 @default.
- W2023915566 cites W2078067019 @default.
- W2023915566 cites W2082681385 @default.
- W2023915566 cites W2083263655 @default.
- W2023915566 cites W2084752224 @default.
- W2023915566 cites W2088877906 @default.
- W2023915566 cites W2093619669 @default.
- W2023915566 cites W2102866044 @default.
- W2023915566 cites W2106074752 @default.
- W2023915566 cites W2107516774 @default.
- W2023915566 cites W2133277680 @default.
- W2023915566 cites W2133287637 @default.
- W2023915566 cites W2147310173 @default.
- W2023915566 cites W2159971808 @default.
- W2023915566 cites W2242323775 @default.
- W2023915566 cites W2579848543 @default.
- W2023915566 cites W2955812573 @default.
- W2023915566 doi "https://doi.org/10.1088/0031-9155/58/21/7661" @default.
- W2023915566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24113375" @default.
- W2023915566 hasPublicationYear "2013" @default.
- W2023915566 type Work @default.
- W2023915566 sameAs 2023915566 @default.
- W2023915566 citedByCount "15" @default.
- W2023915566 countsByYear W20239155662013 @default.
- W2023915566 countsByYear W20239155662015 @default.
- W2023915566 countsByYear W20239155662016 @default.
- W2023915566 countsByYear W20239155662017 @default.
- W2023915566 countsByYear W20239155662022 @default.
- W2023915566 crossrefType "journal-article" @default.
- W2023915566 hasAuthorship W2023915566A5013513157 @default.
- W2023915566 hasAuthorship W2023915566A5038597614 @default.
- W2023915566 hasAuthorship W2023915566A5047495544 @default.
- W2023915566 hasAuthorship W2023915566A5051781634 @default.
- W2023915566 hasAuthorship W2023915566A5055888843 @default.
- W2023915566 hasAuthorship W2023915566A5057987192 @default.
- W2023915566 hasAuthorship W2023915566A5065959120 @default.
- W2023915566 hasAuthorship W2023915566A5089146739 @default.
- W2023915566 hasAuthorship W2023915566A5089476321 @default.
- W2023915566 hasAuthorship W2023915566A5090807936 @default.
- W2023915566 hasConcept C105795698 @default.
- W2023915566 hasConcept C111996192 @default.
- W2023915566 hasConcept C115961682 @default.
- W2023915566 hasConcept C121332964 @default.
- W2023915566 hasConcept C154945302 @default.
- W2023915566 hasConcept C166704113 @default.
- W2023915566 hasConcept C22679943 @default.
- W2023915566 hasConcept C2989005 @default.
- W2023915566 hasConcept C33923547 @default.
- W2023915566 hasConcept C35772409 @default.
- W2023915566 hasConcept C41008148 @default.
- W2023915566 hasConcept C62520636 @default.
- W2023915566 hasConcept C71907059 @default.
- W2023915566 hasConcept C71924100 @default.
- W2023915566 hasConcept C84114770 @default.
- W2023915566 hasConcept C99498987 @default.
- W2023915566 hasConceptScore W2023915566C105795698 @default.
- W2023915566 hasConceptScore W2023915566C111996192 @default.
- W2023915566 hasConceptScore W2023915566C115961682 @default.
- W2023915566 hasConceptScore W2023915566C121332964 @default.
- W2023915566 hasConceptScore W2023915566C154945302 @default.
- W2023915566 hasConceptScore W2023915566C166704113 @default.
- W2023915566 hasConceptScore W2023915566C22679943 @default.
- W2023915566 hasConceptScore W2023915566C2989005 @default.
- W2023915566 hasConceptScore W2023915566C33923547 @default.