Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023916418> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2023916418 endingPage "1376" @default.
- W2023916418 startingPage "1366" @default.
- W2023916418 abstract "Multi-agent reinforcement learning technologies are mainly investigated from two perspectives of the concurrence and the game theory. The former chiefly applies to cooperative multi-agent systems, while the latter usually applies to coordinated multi-agent systems. However, there exist such problems as the credit assignment and the multiple Nash equilibriums for agents with them. In this paper, we propose a new multi-agent reinforcement learning model and algorithm LMRL from a layer perspective. LMRL model is composed of an off-line training layer that employs a single agent reinforcement learning technology to acquire stationary strategy knowledge and an online interaction layer that employs a multi-agent reinforcement learning technology and the strategy knowledge that can be revised dynamically to interact with the environment. An agent with LMRL can improve its generalization capability, adaptability and coordination ability. Experiments show that the performance of LMRL can be better than those of a single agent reinforcement learning and Nash-Q." @default.
- W2023916418 created "2016-06-24" @default.
- W2023916418 creator A5002901852 @default.
- W2023916418 creator A5043605963 @default.
- W2023916418 creator A5070843481 @default.
- W2023916418 creator A5074250521 @default.
- W2023916418 creator A5089409762 @default.
- W2023916418 date "2007-11-01" @default.
- W2023916418 modified "2023-10-17" @default.
- W2023916418 title "A two-layered multi-agent reinforcement learning model and algorithm" @default.
- W2023916418 cites W1557517019 @default.
- W2023916418 doi "https://doi.org/10.1016/j.jnca.2006.09.004" @default.
- W2023916418 hasPublicationYear "2007" @default.
- W2023916418 type Work @default.
- W2023916418 sameAs 2023916418 @default.
- W2023916418 citedByCount "19" @default.
- W2023916418 countsByYear W20239164182012 @default.
- W2023916418 countsByYear W20239164182014 @default.
- W2023916418 countsByYear W20239164182015 @default.
- W2023916418 countsByYear W20239164182016 @default.
- W2023916418 countsByYear W20239164182018 @default.
- W2023916418 countsByYear W20239164182019 @default.
- W2023916418 countsByYear W20239164182021 @default.
- W2023916418 countsByYear W20239164182022 @default.
- W2023916418 countsByYear W20239164182023 @default.
- W2023916418 crossrefType "journal-article" @default.
- W2023916418 hasAuthorship W2023916418A5002901852 @default.
- W2023916418 hasAuthorship W2023916418A5043605963 @default.
- W2023916418 hasAuthorship W2023916418A5070843481 @default.
- W2023916418 hasAuthorship W2023916418A5074250521 @default.
- W2023916418 hasAuthorship W2023916418A5089409762 @default.
- W2023916418 hasConcept C126255220 @default.
- W2023916418 hasConcept C12713177 @default.
- W2023916418 hasConcept C134306372 @default.
- W2023916418 hasConcept C154945302 @default.
- W2023916418 hasConcept C15744967 @default.
- W2023916418 hasConcept C177148314 @default.
- W2023916418 hasConcept C177606310 @default.
- W2023916418 hasConcept C178790620 @default.
- W2023916418 hasConcept C185592680 @default.
- W2023916418 hasConcept C18903297 @default.
- W2023916418 hasConcept C2779227376 @default.
- W2023916418 hasConcept C33923547 @default.
- W2023916418 hasConcept C41008148 @default.
- W2023916418 hasConcept C41550386 @default.
- W2023916418 hasConcept C46814582 @default.
- W2023916418 hasConcept C47932503 @default.
- W2023916418 hasConcept C67203356 @default.
- W2023916418 hasConcept C77805123 @default.
- W2023916418 hasConcept C86803240 @default.
- W2023916418 hasConcept C97541855 @default.
- W2023916418 hasConceptScore W2023916418C126255220 @default.
- W2023916418 hasConceptScore W2023916418C12713177 @default.
- W2023916418 hasConceptScore W2023916418C134306372 @default.
- W2023916418 hasConceptScore W2023916418C154945302 @default.
- W2023916418 hasConceptScore W2023916418C15744967 @default.
- W2023916418 hasConceptScore W2023916418C177148314 @default.
- W2023916418 hasConceptScore W2023916418C177606310 @default.
- W2023916418 hasConceptScore W2023916418C178790620 @default.
- W2023916418 hasConceptScore W2023916418C185592680 @default.
- W2023916418 hasConceptScore W2023916418C18903297 @default.
- W2023916418 hasConceptScore W2023916418C2779227376 @default.
- W2023916418 hasConceptScore W2023916418C33923547 @default.
- W2023916418 hasConceptScore W2023916418C41008148 @default.
- W2023916418 hasConceptScore W2023916418C41550386 @default.
- W2023916418 hasConceptScore W2023916418C46814582 @default.
- W2023916418 hasConceptScore W2023916418C47932503 @default.
- W2023916418 hasConceptScore W2023916418C67203356 @default.
- W2023916418 hasConceptScore W2023916418C77805123 @default.
- W2023916418 hasConceptScore W2023916418C86803240 @default.
- W2023916418 hasConceptScore W2023916418C97541855 @default.
- W2023916418 hasIssue "4" @default.
- W2023916418 hasLocation W20239164181 @default.
- W2023916418 hasOpenAccess W2023916418 @default.
- W2023916418 hasPrimaryLocation W20239164181 @default.
- W2023916418 hasRelatedWork W1827311204 @default.
- W2023916418 hasRelatedWork W2061783822 @default.
- W2023916418 hasRelatedWork W2270300680 @default.
- W2023916418 hasRelatedWork W2613361295 @default.
- W2023916418 hasRelatedWork W2909304650 @default.
- W2023916418 hasRelatedWork W3005560120 @default.
- W2023916418 hasRelatedWork W3203256658 @default.
- W2023916418 hasRelatedWork W4225393484 @default.
- W2023916418 hasRelatedWork W4226342598 @default.
- W2023916418 hasRelatedWork W4287964918 @default.
- W2023916418 hasVolume "30" @default.
- W2023916418 isParatext "false" @default.
- W2023916418 isRetracted "false" @default.
- W2023916418 magId "2023916418" @default.
- W2023916418 workType "article" @default.