Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023954477> ?p ?o ?g. }
- W2023954477 endingPage "3455" @default.
- W2023954477 startingPage "3430" @default.
- W2023954477 abstract "The excitation energies of impurities in semiconductors, as well as their donor and acceptor ionization energies, represent a combination of one-electron and many-electron multiplet effects, where the latter contribution becomes increasingly significant as localized states are formed. Analysis of the absorption and ionization data for $3d$ impurities is often obscured by the inability of contemporary multiplet theories (e.g., the Tanabe-Sugano approach) to separate these two contributions and by the inadequacy of mean-field, one-electron theories that neglect multiplet effects altogether. We present a novel theory of the multiplet structure of localized impurities in semiconductors that circumvents the major shortcomings of the classical Tanabe-Sugano approach and at the same time separates many-electron from mean-field effects. Excitation and ionization energies are given as a sum of mean-field (MF) and multiplet corrections (MC): $ensuremath{Delta}E={ensuremath{Delta}E}_{mathrm{MF}}+{ensuremath{Delta}E}_{mathrm{MC}}$. We determine ${ensuremath{Delta}E}_{mathrm{MC}}$ from the analysis of the experimental data. This provides a way to compare experimentally deduced mean-field excitation and ionization energies ${ensuremath{Delta}E}_{mathrm{MF}}=ensuremath{Delta}Eensuremath{-}{ensuremath{Delta}E}_{mathrm{MC}}$ with the results of electronic-structure calculations. The three central quantities of the theory---the $e$- and ${t}_{2}$- orbital deformation parameters and the effective crystal-field splitting---can be obtained from mean-field electronic-structure calculations, or, alternatively, can be deduced from experiment. In this paper, we analyze the absorption spectra of $3d$ impurities in ZnO, ZnS, ZnSe, and GaP, as well as those of the bulk Mott insulators NiO, CoO, and MnO, in light of the new approach to multiplet effects. These mean-field parameters are shown to display simple chemical regularities with the impurity atomic number and the covalency of the host crystal; they combine, however, to produce interesting non-monotonic trends in the many-electron correction terms ${ensuremath{Delta}E}_{mathrm{MC}}$. These trends explain many of the hitherto puzzling discrepancies between one-electron (${ensuremath{Delta}E}_{mathrm{MF}}$) theory and experiment ($ensuremath{Delta}E$). This approach unravels the chemical trends underlying the excitation and donor or acceptor spectra, provides predictions for unobserved excitations and donor or acceptor energies, and distinguishes the regime where one-electron theory is applicable (${ensuremath{Delta}E}_{mathrm{MC}}$ small) from the region where it is not (${ensuremath{Delta}E}_{mathrm{MC}}ensuremath{sim}ensuremath{Delta}E$)." @default.
- W2023954477 created "2016-06-24" @default.
- W2023954477 creator A5007886751 @default.
- W2023954477 creator A5025482578 @default.
- W2023954477 creator A5054716258 @default.
- W2023954477 date "1984-09-15" @default.
- W2023954477 modified "2023-10-03" @default.
- W2023954477 title "Many-electron multiplet effects in the spectra of<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:math>impurities in heteropolar semiconductors" @default.
- W2023954477 cites W1492672101 @default.
- W2023954477 cites W1577510219 @default.
- W2023954477 cites W1579936859 @default.
- W2023954477 cites W1581719392 @default.
- W2023954477 cites W1651568435 @default.
- W2023954477 cites W1840376913 @default.
- W2023954477 cites W1964783532 @default.
- W2023954477 cites W1964880721 @default.
- W2023954477 cites W1967641588 @default.
- W2023954477 cites W1970291256 @default.
- W2023954477 cites W1971671866 @default.
- W2023954477 cites W1975797096 @default.
- W2023954477 cites W1979363130 @default.
- W2023954477 cites W1981917545 @default.
- W2023954477 cites W1984763546 @default.
- W2023954477 cites W1985766728 @default.
- W2023954477 cites W1986668477 @default.
- W2023954477 cites W1988222518 @default.
- W2023954477 cites W1989084102 @default.
- W2023954477 cites W1992037506 @default.
- W2023954477 cites W1994144425 @default.
- W2023954477 cites W1994243799 @default.
- W2023954477 cites W1994443531 @default.
- W2023954477 cites W1994857703 @default.
- W2023954477 cites W1998989481 @default.
- W2023954477 cites W2001658673 @default.
- W2023954477 cites W2002590365 @default.
- W2023954477 cites W2003059430 @default.
- W2023954477 cites W2006100825 @default.
- W2023954477 cites W2007253245 @default.
- W2023954477 cites W2008772921 @default.
- W2023954477 cites W2011306101 @default.
- W2023954477 cites W2012741486 @default.
- W2023954477 cites W2014234564 @default.
- W2023954477 cites W2021905435 @default.
- W2023954477 cites W2031044270 @default.
- W2023954477 cites W2033590401 @default.
- W2023954477 cites W2035096158 @default.
- W2023954477 cites W2035110462 @default.
- W2023954477 cites W2036193670 @default.
- W2023954477 cites W2037373967 @default.
- W2023954477 cites W2041136270 @default.
- W2023954477 cites W2042862748 @default.
- W2023954477 cites W2046474248 @default.
- W2023954477 cites W2049707013 @default.
- W2023954477 cites W2053733159 @default.
- W2023954477 cites W2055257247 @default.
- W2023954477 cites W2055595661 @default.
- W2023954477 cites W2056291643 @default.
- W2023954477 cites W2057767191 @default.
- W2023954477 cites W2059340853 @default.
- W2023954477 cites W2059474856 @default.
- W2023954477 cites W2061952161 @default.
- W2023954477 cites W2062604034 @default.
- W2023954477 cites W2062616087 @default.
- W2023954477 cites W2063092915 @default.
- W2023954477 cites W2066528100 @default.
- W2023954477 cites W2069049380 @default.
- W2023954477 cites W2071069263 @default.
- W2023954477 cites W2075215821 @default.
- W2023954477 cites W2079546558 @default.
- W2023954477 cites W2080479432 @default.
- W2023954477 cites W2081713016 @default.
- W2023954477 cites W2082090476 @default.
- W2023954477 cites W2088769587 @default.
- W2023954477 cites W2089701300 @default.
- W2023954477 cites W2090375975 @default.
- W2023954477 cites W2090735983 @default.
- W2023954477 cites W2093334015 @default.
- W2023954477 cites W2093508957 @default.
- W2023954477 cites W2095067599 @default.
- W2023954477 cites W2101171803 @default.
- W2023954477 cites W2313224516 @default.
- W2023954477 cites W2331062595 @default.
- W2023954477 cites W2333598973 @default.
- W2023954477 cites W3151546586 @default.
- W2023954477 cites W4232202882 @default.
- W2023954477 cites W4250690077 @default.
- W2023954477 cites W940918873 @default.
- W2023954477 doi "https://doi.org/10.1103/physrevb.30.3430" @default.
- W2023954477 hasPublicationYear "1984" @default.
- W2023954477 type Work @default.
- W2023954477 sameAs 2023954477 @default.
- W2023954477 citedByCount "244" @default.
- W2023954477 countsByYear W20239544772012 @default.
- W2023954477 countsByYear W20239544772013 @default.
- W2023954477 countsByYear W20239544772014 @default.
- W2023954477 countsByYear W20239544772015 @default.
- W2023954477 countsByYear W20239544772016 @default.
- W2023954477 countsByYear W20239544772020 @default.