Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023969170> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2023969170 endingPage "295" @default.
- W2023969170 startingPage "295" @default.
- W2023969170 abstract "If G is a topological group then by a G-space we mean a completely regular space X together with a fixed action of G on X. If one restricts consideration to compact Lie groups then a substantial general theory of G-spaces can be developed. However if G is allowed to be anything more general than a compact Lie group, theorems about G-spaces become extremely scarce, and it is clear that if one hopes to recover any sort of theory, some restriction must be made on the way G is allowed to act. A clue as to the sort of restriction that should be made is to be found in one of the most fundamental facts in the theory of G-spaces when G is a compact Lie group; namely the result, proved in special cases by Gleason 12], Koszul [5], Montgomery and Yang [6] and finally, in full generality, by Mostow [8] that there is a through each point of a G-space (see 2.1.1 for definition). In fact it is clear from even a passing acquaintance with the methodology of proof in transformation group theory that if G is a Lie group and X a G-space with compact isotropy groups for which there exists a slice at each point, then many of the statements that apply when G is compact are valid in this case also. In ? 1 of this paper we define a G-space X (G any locally compact group) -to be a Cartan G-space if for each point of X there is a neighborhood U such that the set of g in G for which g U n U is not empty has compact closure. In case G acts freely on X (i.e., the isotropy group at each point is the identity) this turns out to be equivalent to H. Cartan's basic axiom PF for principal bundles in the Seminaire H. Cartan of 1948-49, which explains the choice of name. In ? 2 we show that if G is a Lie group then the Cartan G-spaces are precisely those G-spaces with compact isotropy groups for which there is a slice through every point. As remarked above this allows one to extend a substantial portion of the theory of G-space that holds when G is a compact Lie group to Cartan G-spaces (or the slightly more restrictive class of proper G-spaces, also introduced in ? 1) when G is an arbitrary Lie group. Part of this extension is carried out in ? 4, more or less by way of showing what can be done. In particular we prove a generalization of Mostow's equivariant embed-" @default.
- W2023969170 created "2016-06-24" @default.
- W2023969170 creator A5057918239 @default.
- W2023969170 date "1961-03-01" @default.
- W2023969170 modified "2023-10-14" @default.
- W2023969170 title "On the Existence of Slices for Actions of Non-Compact Lie Groups" @default.
- W2023969170 cites W2018904864 @default.
- W2023969170 cites W2026256648 @default.
- W2023969170 cites W2322831583 @default.
- W2023969170 cites W2325686439 @default.
- W2023969170 cites W2325917149 @default.
- W2023969170 cites W2332838444 @default.
- W2023969170 cites W324411233 @default.
- W2023969170 doi "https://doi.org/10.2307/1970335" @default.
- W2023969170 hasPublicationYear "1961" @default.
- W2023969170 type Work @default.
- W2023969170 sameAs 2023969170 @default.
- W2023969170 citedByCount "574" @default.
- W2023969170 countsByYear W20239691702012 @default.
- W2023969170 countsByYear W20239691702013 @default.
- W2023969170 countsByYear W20239691702014 @default.
- W2023969170 countsByYear W20239691702015 @default.
- W2023969170 countsByYear W20239691702016 @default.
- W2023969170 countsByYear W20239691702017 @default.
- W2023969170 countsByYear W20239691702018 @default.
- W2023969170 countsByYear W20239691702019 @default.
- W2023969170 countsByYear W20239691702020 @default.
- W2023969170 countsByYear W20239691702021 @default.
- W2023969170 countsByYear W20239691702022 @default.
- W2023969170 countsByYear W20239691702023 @default.
- W2023969170 crossrefType "journal-article" @default.
- W2023969170 hasAuthorship W2023969170A5057918239 @default.
- W2023969170 hasConcept C136119220 @default.
- W2023969170 hasConcept C187915474 @default.
- W2023969170 hasConcept C202444582 @default.
- W2023969170 hasConcept C22365015 @default.
- W2023969170 hasConcept C33923547 @default.
- W2023969170 hasConceptScore W2023969170C136119220 @default.
- W2023969170 hasConceptScore W2023969170C187915474 @default.
- W2023969170 hasConceptScore W2023969170C202444582 @default.
- W2023969170 hasConceptScore W2023969170C22365015 @default.
- W2023969170 hasConceptScore W2023969170C33923547 @default.
- W2023969170 hasIssue "2" @default.
- W2023969170 hasLocation W20239691701 @default.
- W2023969170 hasOpenAccess W2023969170 @default.
- W2023969170 hasPrimaryLocation W20239691701 @default.
- W2023969170 hasRelatedWork W1968209254 @default.
- W2023969170 hasRelatedWork W1993200459 @default.
- W2023969170 hasRelatedWork W2020681214 @default.
- W2023969170 hasRelatedWork W2093102607 @default.
- W2023969170 hasRelatedWork W2984539704 @default.
- W2023969170 hasRelatedWork W3011491025 @default.
- W2023969170 hasRelatedWork W3099641547 @default.
- W2023969170 hasRelatedWork W4230292203 @default.
- W2023969170 hasRelatedWork W4242595863 @default.
- W2023969170 hasRelatedWork W4248510752 @default.
- W2023969170 hasVolume "73" @default.
- W2023969170 isParatext "false" @default.
- W2023969170 isRetracted "false" @default.
- W2023969170 magId "2023969170" @default.
- W2023969170 workType "article" @default.