Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023972518> ?p ?o ?g. }
- W2023972518 abstract "The lattice Boltzmann (LB) method has proven to be a promising method for simulating fluid dynamics in porous media. When fluid flow in pores is the only concern, a standard LB implementation, which stores one or two sets of particle distribution functions (PDFs) for both pore and solid cells, wastes a large amount of memory, especially for low-porosity media. This paper proposes a LB implementation scheme that stores a single set of PDFs for pore cells only and therefore makes it possible to simulate flow through larger and more-realistic porous models. A unique feature of this scheme is that it decomposes all PDFs into a set of 1D arrays in such a way that each array corresponds to a set of pore cells that connect one another along a pair of opposite LB velocity directions. This allows LB propagation and a standard bounce-back rule to be realized together as one or two circular shifting operations on every array. For this reason, this scheme is called SHIFT. Although PDFs are not stored in an efficient way for LB collision operation, it is shown that the incurred overhead could be reduced by properly arranging PDF arrays according to the pore structures. A D3Q15 LB implementation of SHIFT using the lattice Bhatnagar-Gross-Krook model is applied to simulate the Stokes flow through models of four natural and synthetic rock samples with porosities ranging from about 10% to 38%. Results show that SHIFT requires 36-82 % less memory than a comparable D3Q15 LB does, which stores a single set of PDF for both pore and solid cells. SHIFT achieves minimum performances of over 11 and 3.8 mega-lattice-updates-per-second (MLUPS) for the combined propagation and bounce-back operation and the collision operation, respectively, and therefore a minimum of 2.8 MLUPS in total on a computer with one AMD Opteron 2218. The performance of the collision operation is significantly improved for all cases when a simple K -mean clustering technique is employed to rearrange PDF arrays. It is argued and shown that the number of PDF arrays per pore cell and the length frequency of PDF arrays are useful measurements on the geometry and topology of the pore structures and these characteristics are able to explain SHIFT performance variations." @default.
- W2023972518 created "2016-06-24" @default.
- W2023972518 creator A5015153612 @default.
- W2023972518 creator A5032407477 @default.
- W2023972518 creator A5033565145 @default.
- W2023972518 creator A5082445875 @default.
- W2023972518 date "2010-05-06" @default.
- W2023972518 modified "2023-09-26" @default.
- W2023972518 title "SHIFT: An implementation for lattice Boltzmann simulation in low-porosity porous media" @default.
- W2023972518 cites W1482188528 @default.
- W2023972518 cites W1555417381 @default.
- W2023972518 cites W1724950349 @default.
- W2023972518 cites W1964275039 @default.
- W2023972518 cites W1971208389 @default.
- W2023972518 cites W1971876223 @default.
- W2023972518 cites W1981136290 @default.
- W2023972518 cites W1985635555 @default.
- W2023972518 cites W1992773065 @default.
- W2023972518 cites W2003402426 @default.
- W2023972518 cites W2012251841 @default.
- W2023972518 cites W2019416919 @default.
- W2023972518 cites W2019421148 @default.
- W2023972518 cites W2030659223 @default.
- W2023972518 cites W2031524210 @default.
- W2023972518 cites W2031586865 @default.
- W2023972518 cites W2032904292 @default.
- W2023972518 cites W2035157815 @default.
- W2023972518 cites W2040259398 @default.
- W2023972518 cites W2041498130 @default.
- W2023972518 cites W2048806419 @default.
- W2023972518 cites W2054274334 @default.
- W2023972518 cites W2058916022 @default.
- W2023972518 cites W2060138396 @default.
- W2023972518 cites W2062900651 @default.
- W2023972518 cites W2066060292 @default.
- W2023972518 cites W2071530432 @default.
- W2023972518 cites W2079762823 @default.
- W2023972518 cites W2081233300 @default.
- W2023972518 cites W2086157762 @default.
- W2023972518 cites W2091113987 @default.
- W2023972518 cites W2091899408 @default.
- W2023972518 cites W2095283463 @default.
- W2023972518 cites W2095470085 @default.
- W2023972518 cites W2102744385 @default.
- W2023972518 cites W2109129867 @default.
- W2023972518 cites W2117242079 @default.
- W2023972518 cites W2118584836 @default.
- W2023972518 cites W2119950184 @default.
- W2023972518 cites W2167555856 @default.
- W2023972518 cites W2169366690 @default.
- W2023972518 cites W4236385439 @default.
- W2023972518 cites W4240774490 @default.
- W2023972518 cites W4254842530 @default.
- W2023972518 doi "https://doi.org/10.1103/physreve.81.056702" @default.
- W2023972518 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20866349" @default.
- W2023972518 hasPublicationYear "2010" @default.
- W2023972518 type Work @default.
- W2023972518 sameAs 2023972518 @default.
- W2023972518 citedByCount "25" @default.
- W2023972518 countsByYear W20239725182012 @default.
- W2023972518 countsByYear W20239725182013 @default.
- W2023972518 countsByYear W20239725182014 @default.
- W2023972518 countsByYear W20239725182015 @default.
- W2023972518 countsByYear W20239725182016 @default.
- W2023972518 countsByYear W20239725182017 @default.
- W2023972518 countsByYear W20239725182018 @default.
- W2023972518 countsByYear W20239725182019 @default.
- W2023972518 countsByYear W20239725182020 @default.
- W2023972518 countsByYear W20239725182021 @default.
- W2023972518 crossrefType "journal-article" @default.
- W2023972518 hasAuthorship W2023972518A5015153612 @default.
- W2023972518 hasAuthorship W2023972518A5032407477 @default.
- W2023972518 hasAuthorship W2023972518A5033565145 @default.
- W2023972518 hasAuthorship W2023972518A5082445875 @default.
- W2023972518 hasConcept C105569014 @default.
- W2023972518 hasConcept C111919701 @default.
- W2023972518 hasConcept C11413529 @default.
- W2023972518 hasConcept C121332964 @default.
- W2023972518 hasConcept C121864883 @default.
- W2023972518 hasConcept C159985019 @default.
- W2023972518 hasConcept C177264268 @default.
- W2023972518 hasConcept C192562407 @default.
- W2023972518 hasConcept C199360897 @default.
- W2023972518 hasConcept C21821499 @default.
- W2023972518 hasConcept C24890656 @default.
- W2023972518 hasConcept C2779960059 @default.
- W2023972518 hasConcept C2781204021 @default.
- W2023972518 hasConcept C38349280 @default.
- W2023972518 hasConcept C41008148 @default.
- W2023972518 hasConcept C57879066 @default.
- W2023972518 hasConcept C6648577 @default.
- W2023972518 hasConceptScore W2023972518C105569014 @default.
- W2023972518 hasConceptScore W2023972518C111919701 @default.
- W2023972518 hasConceptScore W2023972518C11413529 @default.
- W2023972518 hasConceptScore W2023972518C121332964 @default.
- W2023972518 hasConceptScore W2023972518C121864883 @default.
- W2023972518 hasConceptScore W2023972518C159985019 @default.
- W2023972518 hasConceptScore W2023972518C177264268 @default.
- W2023972518 hasConceptScore W2023972518C192562407 @default.
- W2023972518 hasConceptScore W2023972518C199360897 @default.