Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023984489> ?p ?o ?g. }
- W2023984489 endingPage "273" @default.
- W2023984489 startingPage "261" @default.
- W2023984489 abstract "Abstract A comparison of the Mamdani and the Takagi-Sugeno (TS) fuzzy inference systems is presented for predicting streamflow values. The TS fuzzy rule base uses linear functions of inputs to predict the output, whereas the Mamdani version of inference determines outputs through fuzzy sub-sets. A genetic algorithm-trained Mamdani system is applied for streamflow forecasting. All the uncertainties and model complications are treated in linguistic expressions in the form of IF—THEN statements. Fuzzy membership functions, rules and the type of defuzzification method are adjusted until the best correlation between measured and predicted values is reached. The two methods are then applied to flow predictions on the Euphrates River in Turkey, without employing exogenous variables such as rainfall. The advantages and disadvantages of the models are discussed using the case study. It is shown that the Mamdani type of fuzzy inference modelling outperforms the Takagi-Sugeno approach in terms of error criteria comparisons, but neither of the two outperforms a standard ARMA(2, 2) model." @default.
- W2023984489 created "2016-06-24" @default.
- W2023984489 creator A5064405823 @default.
- W2023984489 date "2009-04-01" @default.
- W2023984489 modified "2023-09-27" @default.
- W2023984489 title "Comparison of fuzzy inference systems for streamflow prediction" @default.
- W2023984489 cites W1553059839 @default.
- W2023984489 cites W1973431037 @default.
- W2023984489 cites W1973548398 @default.
- W2023984489 cites W1973676661 @default.
- W2023984489 cites W1975307294 @default.
- W2023984489 cites W1995266473 @default.
- W2023984489 cites W2003873404 @default.
- W2023984489 cites W2004700005 @default.
- W2023984489 cites W2011433625 @default.
- W2023984489 cites W2011963800 @default.
- W2023984489 cites W2012883379 @default.
- W2023984489 cites W2015963298 @default.
- W2023984489 cites W2017198208 @default.
- W2023984489 cites W2018790612 @default.
- W2023984489 cites W2019207321 @default.
- W2023984489 cites W2029732391 @default.
- W2023984489 cites W2058441759 @default.
- W2023984489 cites W2069002482 @default.
- W2023984489 cites W2071585322 @default.
- W2023984489 cites W2073491572 @default.
- W2023984489 cites W2078063144 @default.
- W2023984489 cites W2079325629 @default.
- W2023984489 cites W2088840159 @default.
- W2023984489 cites W2090370442 @default.
- W2023984489 cites W2093540472 @default.
- W2023984489 cites W2094447130 @default.
- W2023984489 cites W2126289419 @default.
- W2023984489 cites W2128597623 @default.
- W2023984489 cites W2130644344 @default.
- W2023984489 cites W2156415214 @default.
- W2023984489 cites W2158260560 @default.
- W2023984489 cites W2163985548 @default.
- W2023984489 cites W2164017619 @default.
- W2023984489 cites W2172147742 @default.
- W2023984489 cites W2484215240 @default.
- W2023984489 cites W4211007335 @default.
- W2023984489 cites W4379474952 @default.
- W2023984489 cites W3141923273 @default.
- W2023984489 doi "https://doi.org/10.1623/hysj.54.2.261" @default.
- W2023984489 hasPublicationYear "2009" @default.
- W2023984489 type Work @default.
- W2023984489 sameAs 2023984489 @default.
- W2023984489 citedByCount "61" @default.
- W2023984489 countsByYear W20239844892012 @default.
- W2023984489 countsByYear W20239844892013 @default.
- W2023984489 countsByYear W20239844892014 @default.
- W2023984489 countsByYear W20239844892015 @default.
- W2023984489 countsByYear W20239844892016 @default.
- W2023984489 countsByYear W20239844892017 @default.
- W2023984489 countsByYear W20239844892018 @default.
- W2023984489 countsByYear W20239844892019 @default.
- W2023984489 countsByYear W20239844892020 @default.
- W2023984489 countsByYear W20239844892021 @default.
- W2023984489 countsByYear W20239844892022 @default.
- W2023984489 countsByYear W20239844892023 @default.
- W2023984489 crossrefType "journal-article" @default.
- W2023984489 hasAuthorship W2023984489A5064405823 @default.
- W2023984489 hasBestOaLocation W20239844891 @default.
- W2023984489 hasConcept C105795698 @default.
- W2023984489 hasConcept C124101348 @default.
- W2023984489 hasConcept C126645576 @default.
- W2023984489 hasConcept C154945302 @default.
- W2023984489 hasConcept C170260401 @default.
- W2023984489 hasConcept C186108316 @default.
- W2023984489 hasConcept C1883856 @default.
- W2023984489 hasConcept C195975749 @default.
- W2023984489 hasConcept C205649164 @default.
- W2023984489 hasConcept C2776214188 @default.
- W2023984489 hasConcept C33923547 @default.
- W2023984489 hasConcept C41008148 @default.
- W2023984489 hasConcept C42011625 @default.
- W2023984489 hasConcept C53739315 @default.
- W2023984489 hasConcept C58166 @default.
- W2023984489 hasConcept C58640448 @default.
- W2023984489 hasConceptScore W2023984489C105795698 @default.
- W2023984489 hasConceptScore W2023984489C124101348 @default.
- W2023984489 hasConceptScore W2023984489C126645576 @default.
- W2023984489 hasConceptScore W2023984489C154945302 @default.
- W2023984489 hasConceptScore W2023984489C170260401 @default.
- W2023984489 hasConceptScore W2023984489C186108316 @default.
- W2023984489 hasConceptScore W2023984489C1883856 @default.
- W2023984489 hasConceptScore W2023984489C195975749 @default.
- W2023984489 hasConceptScore W2023984489C205649164 @default.
- W2023984489 hasConceptScore W2023984489C2776214188 @default.
- W2023984489 hasConceptScore W2023984489C33923547 @default.
- W2023984489 hasConceptScore W2023984489C41008148 @default.
- W2023984489 hasConceptScore W2023984489C42011625 @default.
- W2023984489 hasConceptScore W2023984489C53739315 @default.
- W2023984489 hasConceptScore W2023984489C58166 @default.
- W2023984489 hasConceptScore W2023984489C58640448 @default.
- W2023984489 hasIssue "2" @default.
- W2023984489 hasLocation W20239844891 @default.