Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023985883> ?p ?o ?g. }
- W2023985883 endingPage "505" @default.
- W2023985883 startingPage "501" @default.
- W2023985883 abstract "No AccessJournal of UrologyAdult Urology1 Aug 2010Genetic Prostate Cancer Risk Assessment: Common Variants in 9 Genomic Regions are Associated With Cumulative Risk Brian T. Helfand, Angela J. Fought, Stacy Loeb, Joshua J. Meeks, Donghui Kan, and William J. Catalona Brian T. HelfandBrian T. Helfand More articles by this author , Angela J. FoughtAngela J. Fought More articles by this author , Stacy LoebStacy Loeb More articles by this author , Joshua J. MeeksJoshua J. Meeks More articles by this author , Donghui KanDonghui Kan More articles by this author , and William J. CatalonaWilliam J. Catalona Financial interest and/or other relationship with Beckman Coulter and deCODE Genetics. More articles by this author View All Author Informationhttps://doi.org/10.1016/j.juro.2010.04.032AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: Five genetic variants along chromosomes 8q24 and 17q have a cumulative association with prostate cancer risk. Our research group previously reported an association between these variants and clinicopathological characteristics. More recently 4 additional prostate cancer susceptibility variants were identified on chromosomes 2p15, 10q11, 11q13 and Xp11. We performed cumulative risk assessment incorporating all 9 genetic variants and determined the relationship of the new variants to clinicopathological tumor features. Materials and Methods: The genotype of 9 variants was determined in 687 men of European ancestry who underwent radical prostatectomy from 2002 to 2008 and in 777 healthy volunteer controls. We compared the incidence of these variants in prostate cancer cases and controls, and assessed their cumulative risk. We also determined the relationship of carrier status for the 4 new variants and clinicopathological tumor features. Results: Prostate cancer cases had an increased incidence of all 9 risk variants compared to controls. A cumulative model including the 9 single nucleotide polymorphisms provided greater prostate cancer risk stratification than a model restricted to the original 5 single nucleotide polymorphisms described. Specifically men with 6 or more variants were at greater than 6-fold increased risk for prostate cancer. Although 2p15 and 11q13 carriers were more likely to have aggressive features, other clinicopathological features were similar in carriers and noncarriers. Conclusions: Genetic variants located in 9 regions have a cumulative association with prostate cancer risk. Identification of an increasing number of single nucleotide polymorphisms may provide greater understanding of their combined relationship with CaP risk and disease aggressiveness. References 1 : Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med2000; 343: 78. Google Scholar 2 : A common variant associated with prostate cancer in European and African populations. Nat Genet2006; 38: 652. Google Scholar 3 : Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet2008; 40: 316. Google Scholar 4 : Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A2006; 103: 14068. Google Scholar 5 : Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet2007; 39: 631. Google Scholar 6 : Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet2007; 39: 977. Google Scholar 7 : Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet2008; 40: 310. Google Scholar 8 : Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet2007; 39: 645. Google Scholar 9 : Multiple prostate cancer risk variants on 8q24. Nat Genet2007; 39: 579. Google Scholar 10 : Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet2009; 18: 1368. Google Scholar 11 : Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet2008; 40: 281. Google Scholar 12 : Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc Natl Acad Sci U S A2009; 106: 7933. Google Scholar 13 : Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet2009; 41: 1122. Google Scholar 14 : Two independent prostate cancer risk-associated Loci at 11q13. Cancer Epidemiol Biomarkers Prev2009; 18: 1815. Google Scholar 15 : Cumulative association of five genetic variants with prostate cancer. N Engl J Med2008; 358: 910. Google Scholar 16 : Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations. Prostate2008; 68: 1257. Google Scholar 17 : 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet2008; 16: 496. Google Scholar 18 : Tumor characteristics of carriers and noncarriers of the deCODE 8q24 prostate cancer susceptibility alleles. J Urol2008; 179: 2197. Link, Google Scholar 19 : Pathological outcomes associated with the 17q prostate cancer risk variants. J Urol2009; 181: 2502. Link, Google Scholar 20 : Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate2009; 69: 1548. Google Scholar 21 : Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate2009; 69: 1195. Google Scholar 22 : Clinical utility of five genetic variants for predicting prostate cancer risk and mortality. Prostate2009; 69: 363. Google Scholar 23 : Association of prostate cancer risk variants with clinicopathologic characteristics of the disease. Clin Cancer Res2008; 14: 5819. Google Scholar 24 : Established prostate cancer susceptibility variants are not associated with disease outcome. Cancer Epidemiol Biomarkers Prev2009; 18: 1659. Google Scholar 25 : Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci U S A2010; 107: 2136. Google Scholar 26 : Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst2007; 99: 1836. Google Scholar 27 : A novel prostate cancer susceptibility locus at 19q13. Cancer Res2009; 69: 2720. Google Scholar 28 : Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res2009; 69: 10. Google Scholar 29 : Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate2009; 69: 1565. Google Scholar 30 : Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet2007; 39: 638. Google Scholar Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, and The James Buchanan Brady Urological Institute, The Johns Hopkins University (SL), Baltimore, Maryland© 2010 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited byLoeb S, Cazzaniga W, Robinson D, Garmo H and Stattin P (2019) Opioid Use after Radical Prostatectomy: Nationwide, Population Based Study in SwedenJournal of Urology, VOL. 203, NO. 1, (145-150), Online publication date: 1-Jan-2020.Reinhardt D, Helfand B, Cooper P, Roehl K, Catalona W and Loeb S (2018) Prostate Cancer Risk Alleles are Associated with Prostate Cancer Volume and Prostate SizeJournal of Urology, VOL. 191, NO. 6, (1733-1736), Online publication date: 1-Jun-2014.Helfand B, Loeb S, Hu Q, Cooper P, Roehl K, McGuire B, Baumann N and Catalona W (2018) Personalized Prostate Specific Antigen Testing Using Genetic Variants May Reduce Unnecessary Prostate BiopsiesJournal of Urology, VOL. 189, NO. 5, (1697-1701), Online publication date: 1-May-2013. Volume 184Issue 2August 2010Page: 501-505 Advertisement Copyright & Permissions© 2010 by American Urological Association Education and Research, Inc.Keywordsgeneticsprostatepolymorphismrisksingle nucleotideprostatic neoplasmsAcknowledgmentsGenotyping was done at deCODE Genetics.MetricsAuthor Information Brian T. Helfand More articles by this author Angela J. Fought More articles by this author Stacy Loeb More articles by this author Joshua J. Meeks More articles by this author Donghui Kan More articles by this author William J. Catalona Financial interest and/or other relationship with Beckman Coulter and deCODE Genetics. More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2023985883 created "2016-06-24" @default.
- W2023985883 creator A5010551367 @default.
- W2023985883 creator A5031483568 @default.
- W2023985883 creator A5039572276 @default.
- W2023985883 creator A5065869555 @default.
- W2023985883 creator A5073389579 @default.
- W2023985883 creator A5090660291 @default.
- W2023985883 date "2010-08-01" @default.
- W2023985883 modified "2023-10-14" @default.
- W2023985883 title "Genetic Prostate Cancer Risk Assessment: Common Variants in 9 Genomic Regions are Associated With Cumulative Risk" @default.
- W2023985883 cites W1973059882 @default.
- W2023985883 cites W1974326568 @default.
- W2023985883 cites W1977546001 @default.
- W2023985883 cites W1995404520 @default.
- W2023985883 cites W1997583255 @default.
- W2023985883 cites W2000823134 @default.
- W2023985883 cites W2001816262 @default.
- W2023985883 cites W2014291631 @default.
- W2023985883 cites W2015449882 @default.
- W2023985883 cites W2021986944 @default.
- W2023985883 cites W2037119446 @default.
- W2023985883 cites W2044785539 @default.
- W2023985883 cites W2044916117 @default.
- W2023985883 cites W2045186357 @default.
- W2023985883 cites W2047200356 @default.
- W2023985883 cites W2065218625 @default.
- W2023985883 cites W2066116362 @default.
- W2023985883 cites W2089415609 @default.
- W2023985883 cites W2091275493 @default.
- W2023985883 cites W2093743418 @default.
- W2023985883 cites W2096289472 @default.
- W2023985883 cites W2096983184 @default.
- W2023985883 cites W2105832167 @default.
- W2023985883 cites W2122296279 @default.
- W2023985883 cites W2133234163 @default.
- W2023985883 cites W2154638022 @default.
- W2023985883 cites W2157043398 @default.
- W2023985883 cites W2158827722 @default.
- W2023985883 cites W2164716330 @default.
- W2023985883 cites W2171682260 @default.
- W2023985883 doi "https://doi.org/10.1016/j.juro.2010.04.032" @default.
- W2023985883 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3164535" @default.
- W2023985883 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20620408" @default.
- W2023985883 hasPublicationYear "2010" @default.
- W2023985883 type Work @default.
- W2023985883 sameAs 2023985883 @default.
- W2023985883 citedByCount "27" @default.
- W2023985883 countsByYear W20239858832012 @default.
- W2023985883 countsByYear W20239858832013 @default.
- W2023985883 countsByYear W20239858832014 @default.
- W2023985883 countsByYear W20239858832015 @default.
- W2023985883 countsByYear W20239858832016 @default.
- W2023985883 countsByYear W20239858832018 @default.
- W2023985883 countsByYear W20239858832019 @default.
- W2023985883 crossrefType "journal-article" @default.
- W2023985883 hasAuthorship W2023985883A5010551367 @default.
- W2023985883 hasAuthorship W2023985883A5031483568 @default.
- W2023985883 hasAuthorship W2023985883A5039572276 @default.
- W2023985883 hasAuthorship W2023985883A5065869555 @default.
- W2023985883 hasAuthorship W2023985883A5073389579 @default.
- W2023985883 hasAuthorship W2023985883A5090660291 @default.
- W2023985883 hasBestOaLocation W20239858832 @default.
- W2023985883 hasConcept C121608353 @default.
- W2023985883 hasConcept C12174686 @default.
- W2023985883 hasConcept C126322002 @default.
- W2023985883 hasConcept C143998085 @default.
- W2023985883 hasConcept C2780192828 @default.
- W2023985883 hasConcept C2994039464 @default.
- W2023985883 hasConcept C38652104 @default.
- W2023985883 hasConcept C41008148 @default.
- W2023985883 hasConcept C71924100 @default.
- W2023985883 hasConceptScore W2023985883C121608353 @default.
- W2023985883 hasConceptScore W2023985883C12174686 @default.
- W2023985883 hasConceptScore W2023985883C126322002 @default.
- W2023985883 hasConceptScore W2023985883C143998085 @default.
- W2023985883 hasConceptScore W2023985883C2780192828 @default.
- W2023985883 hasConceptScore W2023985883C2994039464 @default.
- W2023985883 hasConceptScore W2023985883C38652104 @default.
- W2023985883 hasConceptScore W2023985883C41008148 @default.
- W2023985883 hasConceptScore W2023985883C71924100 @default.
- W2023985883 hasIssue "2" @default.
- W2023985883 hasLocation W20239858831 @default.
- W2023985883 hasLocation W20239858832 @default.
- W2023985883 hasLocation W20239858833 @default.
- W2023985883 hasLocation W20239858834 @default.
- W2023985883 hasOpenAccess W2023985883 @default.
- W2023985883 hasPrimaryLocation W20239858831 @default.
- W2023985883 hasRelatedWork W1980245127 @default.
- W2023985883 hasRelatedWork W2045770655 @default.
- W2023985883 hasRelatedWork W2221425694 @default.
- W2023985883 hasRelatedWork W2486716385 @default.
- W2023985883 hasRelatedWork W2810602217 @default.
- W2023985883 hasRelatedWork W2908318037 @default.
- W2023985883 hasRelatedWork W2915965072 @default.
- W2023985883 hasRelatedWork W2962601203 @default.
- W2023985883 hasRelatedWork W2189427681 @default.
- W2023985883 hasRelatedWork W2530851007 @default.