Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023990106> ?p ?o ?g. }
- W2023990106 endingPage "723" @default.
- W2023990106 startingPage "713" @default.
- W2023990106 abstract "This study investigated the impact of chemical cleaning on the physicochemical properties of a nanofiltration membrane and its subsequent separation efficiency of inorganic salts and two pharmaceutically active compounds (PhACs), sulfamethoxazole and carbamazepine. Chemical cleaning was simulated by immersing virgin membrane samples in aqueous citric acid, sodium hydroxide (NaOH), ethylenediaminetetraacetic-acid (EDTA) and sodium dodecyl sulphate (SDS) at various temperatures for 18 h. The cleaning temperature did not exert any discernible impact on the surface charge of the NF270 membrane selected in this study. However, high cleaning temperatures were shown to either amplify or reduce the impact of chemical cleaning on several other membrane properties (including hydrophobicity, surface roughness and permeability) as well as the rejection of both inorganic salts and PhACs. The influence of chemical cleaning on the membrane surface roughness was enhanced at elevated cleaning temperatures. Similarly, at a high cleaning temperature, caustic and acidic cleaning caused a more significant increase in the membrane surface hydrophobicity than that at an ambient temperature. An increase in the cleaning temperature could also slightly amplify the decrease in the membrane permeability due to acidic cleaning. When a caustic cleaning solution (pH 11.5) was used, the membrane permeability only varied slightly with the temperature. Results obtained from Fourier transform infrared spectroscopy (FTIR) analysis suggest that chemical cleaning even at a high temperature did not permanently alter the chemical composition of the membrane active or support layer. Indeed, the effects of chemical cleaning at a high temperature on the physicochemical properties of the membrane could be attributed to the conformational changes of the membrane polymeric matrix. Chemical cleaning using citric acid, SDS or EDTA at a high temperature resulted in a considerable increase in the rejection of salts and PhACs in their neutral form. On the other hand, caustic cleaning at an elevated temperature had no discernible impact on the rejection of inorganic salts and neutral PhACs. This is because caustic cleaning and an elevated cleaning temperature cause opposing effects on the rejection of these solutes. Chemical cleaning at all temperatures investigated in this study did not affect the removal of negatively charged sulfamethoxazole." @default.
- W2023990106 created "2016-06-24" @default.
- W2023990106 creator A5007122065 @default.
- W2023990106 creator A5083433522 @default.
- W2023990106 creator A5087560042 @default.
- W2023990106 date "2013-09-01" @default.
- W2023990106 modified "2023-10-05" @default.
- W2023990106 title "Impact of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs): The role of cleaning temperature" @default.
- W2023990106 cites W1969114355 @default.
- W2023990106 cites W1973617757 @default.
- W2023990106 cites W1976172794 @default.
- W2023990106 cites W1990530823 @default.
- W2023990106 cites W1995300599 @default.
- W2023990106 cites W1995591709 @default.
- W2023990106 cites W2001783879 @default.
- W2023990106 cites W2005188055 @default.
- W2023990106 cites W2006430901 @default.
- W2023990106 cites W2011606799 @default.
- W2023990106 cites W2013128638 @default.
- W2023990106 cites W2016592533 @default.
- W2023990106 cites W2027732613 @default.
- W2023990106 cites W2032461909 @default.
- W2023990106 cites W2034329884 @default.
- W2023990106 cites W2034879243 @default.
- W2023990106 cites W2037578666 @default.
- W2023990106 cites W2041372937 @default.
- W2023990106 cites W2044286218 @default.
- W2023990106 cites W2048848923 @default.
- W2023990106 cites W2051933554 @default.
- W2023990106 cites W2055327941 @default.
- W2023990106 cites W2056150765 @default.
- W2023990106 cites W2068314942 @default.
- W2023990106 cites W2069471620 @default.
- W2023990106 cites W2071587468 @default.
- W2023990106 cites W2071651272 @default.
- W2023990106 cites W2075938388 @default.
- W2023990106 cites W2083794988 @default.
- W2023990106 cites W2086132393 @default.
- W2023990106 cites W2089152655 @default.
- W2023990106 cites W2096197105 @default.
- W2023990106 cites W2104984469 @default.
- W2023990106 cites W2111464588 @default.
- W2023990106 cites W2112184527 @default.
- W2023990106 cites W2137008945 @default.
- W2023990106 cites W2137073834 @default.
- W2023990106 cites W2160822180 @default.
- W2023990106 cites W2169013251 @default.
- W2023990106 cites W2313465341 @default.
- W2023990106 doi "https://doi.org/10.1016/j.jtice.2013.01.030" @default.
- W2023990106 hasPublicationYear "2013" @default.
- W2023990106 type Work @default.
- W2023990106 sameAs 2023990106 @default.
- W2023990106 citedByCount "21" @default.
- W2023990106 countsByYear W20239901062013 @default.
- W2023990106 countsByYear W20239901062014 @default.
- W2023990106 countsByYear W20239901062016 @default.
- W2023990106 countsByYear W20239901062017 @default.
- W2023990106 countsByYear W20239901062018 @default.
- W2023990106 countsByYear W20239901062020 @default.
- W2023990106 countsByYear W20239901062021 @default.
- W2023990106 countsByYear W20239901062022 @default.
- W2023990106 countsByYear W20239901062023 @default.
- W2023990106 crossrefType "journal-article" @default.
- W2023990106 hasAuthorship W2023990106A5007122065 @default.
- W2023990106 hasAuthorship W2023990106A5083433522 @default.
- W2023990106 hasAuthorship W2023990106A5087560042 @default.
- W2023990106 hasBestOaLocation W20239901062 @default.
- W2023990106 hasConcept C127413603 @default.
- W2023990106 hasConcept C146763847 @default.
- W2023990106 hasConcept C160892712 @default.
- W2023990106 hasConcept C165460524 @default.
- W2023990106 hasConcept C178790620 @default.
- W2023990106 hasConcept C179104552 @default.
- W2023990106 hasConcept C184651966 @default.
- W2023990106 hasConcept C185592680 @default.
- W2023990106 hasConcept C197404232 @default.
- W2023990106 hasConcept C2778562268 @default.
- W2023990106 hasConcept C2778973965 @default.
- W2023990106 hasConcept C2779032678 @default.
- W2023990106 hasConcept C41625074 @default.
- W2023990106 hasConcept C42360764 @default.
- W2023990106 hasConcept C43617362 @default.
- W2023990106 hasConcept C55493867 @default.
- W2023990106 hasConceptScore W2023990106C127413603 @default.
- W2023990106 hasConceptScore W2023990106C146763847 @default.
- W2023990106 hasConceptScore W2023990106C160892712 @default.
- W2023990106 hasConceptScore W2023990106C165460524 @default.
- W2023990106 hasConceptScore W2023990106C178790620 @default.
- W2023990106 hasConceptScore W2023990106C179104552 @default.
- W2023990106 hasConceptScore W2023990106C184651966 @default.
- W2023990106 hasConceptScore W2023990106C185592680 @default.
- W2023990106 hasConceptScore W2023990106C197404232 @default.
- W2023990106 hasConceptScore W2023990106C2778562268 @default.
- W2023990106 hasConceptScore W2023990106C2778973965 @default.
- W2023990106 hasConceptScore W2023990106C2779032678 @default.
- W2023990106 hasConceptScore W2023990106C41625074 @default.
- W2023990106 hasConceptScore W2023990106C42360764 @default.
- W2023990106 hasConceptScore W2023990106C43617362 @default.