Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023999552> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2023999552 endingPage "772" @default.
- W2023999552 startingPage "767" @default.
- W2023999552 abstract "A novel method is presented for identifying a state-space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relationship between the state-space model and the finite difference model of linear stochastic systems derived through projection filters. It is proved that least-squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model. In estimating the corresponding state estimator gain, a z-domain method is used. First the deterministic component of the output is subtracted out, and then the state estimator gain is obtained by whitening the remaining signal. An experimental example is used to illustrate the feasibility of the method. YSTEM identification, sometimes also called system modeling, deals with the problem of building a mathematical model for a dynamic system based on its input/output data. This technique is important in many disciplines such as economics, communication, and system dynamics and control.1 The mathematical model allows researchers to understand more about the properties of the system, so that they can explain, predict, or control the behaviors of the system. Recently, a method has been introduced in Refs. 2 and 3 to iden- tify a state-space model from a finite difference model. The differ- ence model, called autoregressive with exogeneous input (ARX), is derived through Kalman filter theories. However, the method re- quires to use an ARX model of large order, which causes intensive computation in the embedded least-squares operation. In Ref. 4 a method is derived to obtain a state-space model from input/output data using the notion of state observers. This approach can use an ARX model with an order much smaller than that derived through the Kalman filter, but the derivation is based on a deterministic ap- proach. In Ref. 5, it has been proved that, as the order of the ARX model increase to infinity, the observer identification converges to the Kalman filter identification. However, for a stochastic system and an ARX model of a small order, to what the least-squares iden- tification of the ARX model will converge in a stochastic sense is not clear. This paper addresses the above-mentioned problems using a stochastic approach. The approach is primarily based on the re- lationship between the state-space model and the finite difference model via the projection filter.3 First, an ARX model is chosen, and then the ordinary least squares is used to estimate the coefficient matrices. Based on the relationship between the projection filter and the state-space model matrices, the system pulse response samples (i.e., the system Markov parameters) can be calculated from the co- efficients of the identified ARX model. The eigensystem realization algorithm (ERA)6 is used to decompose the Markov parameters into a state-space model. In contrast to the time-domain approaches used in Refs. 2 and 5, a different method is developed in this paper using a z-domain approach to compute the state estimator gain. After identifying a state-space model, the deterministic part of the output is subtracted out. The remaining signal represents the stochastic part. A moving- average (MA) model is then introduced to describe the remaining signal. The MA model is computed by identifying the correspond- ing autoregressive (AR) model first and then inverting it. From the identified MA model, the state estimator gain is then calculated. Finally, identification of a 10-bay structure is used to illustrate the feasibility of the approach." @default.
- W2023999552 created "2016-06-24" @default.
- W2023999552 creator A5004039741 @default.
- W2023999552 creator A5012593967 @default.
- W2023999552 creator A5029583302 @default.
- W2023999552 date "1995-07-01" @default.
- W2023999552 modified "2023-10-16" @default.
- W2023999552 title "Identification of linear stochastic systems through projection filters" @default.
- W2023999552 cites W1994722703 @default.
- W2023999552 cites W1998765060 @default.
- W2023999552 cites W2014188059 @default.
- W2023999552 cites W2016349960 @default.
- W2023999552 cites W2060694143 @default.
- W2023999552 cites W2168090960 @default.
- W2023999552 cites W3167551172 @default.
- W2023999552 doi "https://doi.org/10.2514/3.21458" @default.
- W2023999552 hasPublicationYear "1995" @default.
- W2023999552 type Work @default.
- W2023999552 sameAs 2023999552 @default.
- W2023999552 citedByCount "6" @default.
- W2023999552 countsByYear W20239995522014 @default.
- W2023999552 crossrefType "journal-article" @default.
- W2023999552 hasAuthorship W2023999552A5004039741 @default.
- W2023999552 hasAuthorship W2023999552A5012593967 @default.
- W2023999552 hasAuthorship W2023999552A5029583302 @default.
- W2023999552 hasConcept C11413529 @default.
- W2023999552 hasConcept C116834253 @default.
- W2023999552 hasConcept C119247159 @default.
- W2023999552 hasConcept C134306372 @default.
- W2023999552 hasConcept C154945302 @default.
- W2023999552 hasConcept C157286648 @default.
- W2023999552 hasConcept C2775924081 @default.
- W2023999552 hasConcept C2780009758 @default.
- W2023999552 hasConcept C33923547 @default.
- W2023999552 hasConcept C41008148 @default.
- W2023999552 hasConcept C47446073 @default.
- W2023999552 hasConcept C57493831 @default.
- W2023999552 hasConcept C59822182 @default.
- W2023999552 hasConcept C6802819 @default.
- W2023999552 hasConcept C77088390 @default.
- W2023999552 hasConcept C86803240 @default.
- W2023999552 hasConceptScore W2023999552C11413529 @default.
- W2023999552 hasConceptScore W2023999552C116834253 @default.
- W2023999552 hasConceptScore W2023999552C119247159 @default.
- W2023999552 hasConceptScore W2023999552C134306372 @default.
- W2023999552 hasConceptScore W2023999552C154945302 @default.
- W2023999552 hasConceptScore W2023999552C157286648 @default.
- W2023999552 hasConceptScore W2023999552C2775924081 @default.
- W2023999552 hasConceptScore W2023999552C2780009758 @default.
- W2023999552 hasConceptScore W2023999552C33923547 @default.
- W2023999552 hasConceptScore W2023999552C41008148 @default.
- W2023999552 hasConceptScore W2023999552C47446073 @default.
- W2023999552 hasConceptScore W2023999552C57493831 @default.
- W2023999552 hasConceptScore W2023999552C59822182 @default.
- W2023999552 hasConceptScore W2023999552C6802819 @default.
- W2023999552 hasConceptScore W2023999552C77088390 @default.
- W2023999552 hasConceptScore W2023999552C86803240 @default.
- W2023999552 hasIssue "4" @default.
- W2023999552 hasLocation W20239995521 @default.
- W2023999552 hasOpenAccess W2023999552 @default.
- W2023999552 hasPrimaryLocation W20239995521 @default.
- W2023999552 hasRelatedWork W1502127098 @default.
- W2023999552 hasRelatedWork W176335707 @default.
- W2023999552 hasRelatedWork W2059321413 @default.
- W2023999552 hasRelatedWork W2089621528 @default.
- W2023999552 hasRelatedWork W2374657029 @default.
- W2023999552 hasRelatedWork W2482883803 @default.
- W2023999552 hasRelatedWork W2612630795 @default.
- W2023999552 hasRelatedWork W3152884818 @default.
- W2023999552 hasRelatedWork W3207029500 @default.
- W2023999552 hasRelatedWork W4323966687 @default.
- W2023999552 hasVolume "18" @default.
- W2023999552 isParatext "false" @default.
- W2023999552 isRetracted "false" @default.
- W2023999552 magId "2023999552" @default.
- W2023999552 workType "article" @default.