Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024010275> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2024010275 endingPage "676" @default.
- W2024010275 startingPage "662" @default.
- W2024010275 abstract "This paper investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. First, if the parameters are properly scaled, linearized expressions for the mean square error (MSE) in parameter estimates of a nonlinear model will often behave very nearly as if the model were linear. Second, by using prior information, the MSE in properly scaled parameters can be reduced greatly over the MSE of ordinary least squares estimates of parameters. Third, plots of estimated MSE and the estimated standard deviation of MSE versus an auxiliary parameter (the ridge parameter) specifying the degree of influence of the prior information on regression results can help determine the potential for improvement of parameter estimates. Fourth, proposed criteria can be used to make appropriate choices for the ridge parameter and another parameter expressing degree of overall bias in the prior information. Results of a case study of Truckee Meadows, Reno‐Sparks area, Washoe County, Nevada, conform closely to the results of the hypothetical problem. In the Truckee Meadows case, incorporation of prior information did not greatly change the parameter estimates from those obtained by ordinary least squares. However, the analysis showed that both sets of estimates are more reliable than suggested by the standard errors from ordinary least squares." @default.
- W2024010275 created "2016-06-24" @default.
- W2024010275 creator A5006587735 @default.
- W2024010275 date "1983-06-01" @default.
- W2024010275 modified "2023-10-16" @default.
- W2024010275 title "Incorporation of prior information on parameters into nonlinear regression groundwater flow models: 2. Applications" @default.
- W2024010275 cites W1983087717 @default.
- W2024010275 cites W2038923046 @default.
- W2024010275 cites W2067529772 @default.
- W2024010275 cites W2071298741 @default.
- W2024010275 cites W2171495478 @default.
- W2024010275 cites W4234698323 @default.
- W2024010275 doi "https://doi.org/10.1029/wr019i003p00662" @default.
- W2024010275 hasPublicationYear "1983" @default.
- W2024010275 type Work @default.
- W2024010275 sameAs 2024010275 @default.
- W2024010275 citedByCount "52" @default.
- W2024010275 countsByYear W20240102752012 @default.
- W2024010275 countsByYear W20240102752014 @default.
- W2024010275 countsByYear W20240102752017 @default.
- W2024010275 countsByYear W20240102752018 @default.
- W2024010275 crossrefType "journal-article" @default.
- W2024010275 hasAuthorship W2024010275A5006587735 @default.
- W2024010275 hasConcept C105795698 @default.
- W2024010275 hasConcept C121332964 @default.
- W2024010275 hasConcept C127313418 @default.
- W2024010275 hasConcept C139945424 @default.
- W2024010275 hasConcept C151730666 @default.
- W2024010275 hasConcept C152877465 @default.
- W2024010275 hasConcept C158622935 @default.
- W2024010275 hasConcept C167928553 @default.
- W2024010275 hasConcept C185429906 @default.
- W2024010275 hasConcept C188649462 @default.
- W2024010275 hasConcept C22679943 @default.
- W2024010275 hasConcept C32277403 @default.
- W2024010275 hasConcept C33923547 @default.
- W2024010275 hasConcept C45923927 @default.
- W2024010275 hasConcept C46889948 @default.
- W2024010275 hasConcept C48921125 @default.
- W2024010275 hasConcept C62520636 @default.
- W2024010275 hasConcept C83546350 @default.
- W2024010275 hasConcept C9936470 @default.
- W2024010275 hasConcept C99656134 @default.
- W2024010275 hasConceptScore W2024010275C105795698 @default.
- W2024010275 hasConceptScore W2024010275C121332964 @default.
- W2024010275 hasConceptScore W2024010275C127313418 @default.
- W2024010275 hasConceptScore W2024010275C139945424 @default.
- W2024010275 hasConceptScore W2024010275C151730666 @default.
- W2024010275 hasConceptScore W2024010275C152877465 @default.
- W2024010275 hasConceptScore W2024010275C158622935 @default.
- W2024010275 hasConceptScore W2024010275C167928553 @default.
- W2024010275 hasConceptScore W2024010275C185429906 @default.
- W2024010275 hasConceptScore W2024010275C188649462 @default.
- W2024010275 hasConceptScore W2024010275C22679943 @default.
- W2024010275 hasConceptScore W2024010275C32277403 @default.
- W2024010275 hasConceptScore W2024010275C33923547 @default.
- W2024010275 hasConceptScore W2024010275C45923927 @default.
- W2024010275 hasConceptScore W2024010275C46889948 @default.
- W2024010275 hasConceptScore W2024010275C48921125 @default.
- W2024010275 hasConceptScore W2024010275C62520636 @default.
- W2024010275 hasConceptScore W2024010275C83546350 @default.
- W2024010275 hasConceptScore W2024010275C9936470 @default.
- W2024010275 hasConceptScore W2024010275C99656134 @default.
- W2024010275 hasIssue "3" @default.
- W2024010275 hasLocation W20240102751 @default.
- W2024010275 hasOpenAccess W2024010275 @default.
- W2024010275 hasPrimaryLocation W20240102751 @default.
- W2024010275 hasRelatedWork W1809551201 @default.
- W2024010275 hasRelatedWork W1964950501 @default.
- W2024010275 hasRelatedWork W2018697919 @default.
- W2024010275 hasRelatedWork W2024010275 @default.
- W2024010275 hasRelatedWork W2044235108 @default.
- W2024010275 hasRelatedWork W2062105804 @default.
- W2024010275 hasRelatedWork W2075634219 @default.
- W2024010275 hasRelatedWork W2090744688 @default.
- W2024010275 hasRelatedWork W4312475898 @default.
- W2024010275 hasRelatedWork W3111430581 @default.
- W2024010275 hasVolume "19" @default.
- W2024010275 isParatext "false" @default.
- W2024010275 isRetracted "false" @default.
- W2024010275 magId "2024010275" @default.
- W2024010275 workType "article" @default.