Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024013455> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2024013455 abstract "In this study, each chest radiograph was processed by a three- dimensional Gaussian-like matched filter. Edge tracking and region growing techniques were applied to the filtered image to segment all possible nodules. The area and its boundary were then divided into 36 sectors (i.e., 10 degrees per sector) using 36 equi-angle dividers radiated from the center. For each suspicious area, we computed radius, average gradient within the sector, average gradient near the boundary, and contrast were computed features within each 10 degree sector. A total of 144 computed features for one suspicious area were used as input values for a newly designed three layer neural network to perform pattern recognition studies. The neural network system was constructed to emphasize the correlation information associated with the features. In this part of the research, several circular path neural network connections between the input and the first hidden layers were linked. These included (1) self correlation networking and (2) neighborhood correlation networking. The networks for self correlation and neighborhood correlation were designed to extract the common factors within the sector and between sectors, respectively. In this study, neighborhood correlation across sectors of 20 degrees, 30 degrees, 40 degrees, and 50 degrees were used. We have tested this approach on the JPST chest radiograph database consisting of 154 chest radiographs using the grouped jack-knife method. The performance in detecting medium-sized nodules was 75% in sensitivity at 5.9 false-positives per image. The performance remained the same for large nodules (with 75% sensitivity at 5.6 false-positive per image). This work presents a new and effective way in analyzing tumor objects. Instead of lumping global features for each object and analyzing them by a conventional classifier, the new method computes features in sectors and analyzes them using a fan-oriented neural network. We also found that the MCPNN technique performs slightly more effective in detecting larger nodules than smaller nodules." @default.
- W2024013455 created "2016-06-24" @default.
- W2024013455 creator A5014450817 @default.
- W2024013455 creator A5016703037 @default.
- W2024013455 creator A5044649083 @default.
- W2024013455 creator A5079432295 @default.
- W2024013455 creator A5082730464 @default.
- W2024013455 date "1999-05-21" @default.
- W2024013455 modified "2023-09-23" @default.
- W2024013455 title "<title>Feature analysis of lung nodules using sector geometry and multiple circular path neural network</title>" @default.
- W2024013455 cites W1557025929 @default.
- W2024013455 cites W1967923077 @default.
- W2024013455 cites W1969786749 @default.
- W2024013455 cites W1982526788 @default.
- W2024013455 cites W2026457689 @default.
- W2024013455 cites W2054470248 @default.
- W2024013455 cites W2063217105 @default.
- W2024013455 cites W2063929783 @default.
- W2024013455 cites W2075100290 @default.
- W2024013455 cites W2150821047 @default.
- W2024013455 cites W2745632784 @default.
- W2024013455 cites W93648281 @default.
- W2024013455 doi "https://doi.org/10.1117/12.348564" @default.
- W2024013455 hasPublicationYear "1999" @default.
- W2024013455 type Work @default.
- W2024013455 sameAs 2024013455 @default.
- W2024013455 citedByCount "1" @default.
- W2024013455 crossrefType "proceedings-article" @default.
- W2024013455 hasAuthorship W2024013455A5014450817 @default.
- W2024013455 hasAuthorship W2024013455A5016703037 @default.
- W2024013455 hasAuthorship W2024013455A5044649083 @default.
- W2024013455 hasAuthorship W2024013455A5079432295 @default.
- W2024013455 hasAuthorship W2024013455A5082730464 @default.
- W2024013455 hasConcept C106131492 @default.
- W2024013455 hasConcept C117220453 @default.
- W2024013455 hasConcept C126838900 @default.
- W2024013455 hasConcept C127413603 @default.
- W2024013455 hasConcept C134306372 @default.
- W2024013455 hasConcept C138885662 @default.
- W2024013455 hasConcept C153180895 @default.
- W2024013455 hasConcept C154945302 @default.
- W2024013455 hasConcept C21200559 @default.
- W2024013455 hasConcept C24326235 @default.
- W2024013455 hasConcept C2524010 @default.
- W2024013455 hasConcept C2776401178 @default.
- W2024013455 hasConcept C2781137159 @default.
- W2024013455 hasConcept C31972630 @default.
- W2024013455 hasConcept C33923547 @default.
- W2024013455 hasConcept C36454342 @default.
- W2024013455 hasConcept C41008148 @default.
- W2024013455 hasConcept C41895202 @default.
- W2024013455 hasConcept C50644808 @default.
- W2024013455 hasConcept C62354387 @default.
- W2024013455 hasConcept C71924100 @default.
- W2024013455 hasConceptScore W2024013455C106131492 @default.
- W2024013455 hasConceptScore W2024013455C117220453 @default.
- W2024013455 hasConceptScore W2024013455C126838900 @default.
- W2024013455 hasConceptScore W2024013455C127413603 @default.
- W2024013455 hasConceptScore W2024013455C134306372 @default.
- W2024013455 hasConceptScore W2024013455C138885662 @default.
- W2024013455 hasConceptScore W2024013455C153180895 @default.
- W2024013455 hasConceptScore W2024013455C154945302 @default.
- W2024013455 hasConceptScore W2024013455C21200559 @default.
- W2024013455 hasConceptScore W2024013455C24326235 @default.
- W2024013455 hasConceptScore W2024013455C2524010 @default.
- W2024013455 hasConceptScore W2024013455C2776401178 @default.
- W2024013455 hasConceptScore W2024013455C2781137159 @default.
- W2024013455 hasConceptScore W2024013455C31972630 @default.
- W2024013455 hasConceptScore W2024013455C33923547 @default.
- W2024013455 hasConceptScore W2024013455C36454342 @default.
- W2024013455 hasConceptScore W2024013455C41008148 @default.
- W2024013455 hasConceptScore W2024013455C41895202 @default.
- W2024013455 hasConceptScore W2024013455C50644808 @default.
- W2024013455 hasConceptScore W2024013455C62354387 @default.
- W2024013455 hasConceptScore W2024013455C71924100 @default.
- W2024013455 hasLocation W20240134551 @default.
- W2024013455 hasOpenAccess W2024013455 @default.
- W2024013455 hasPrimaryLocation W20240134551 @default.
- W2024013455 hasRelatedWork W1504288058 @default.
- W2024013455 hasRelatedWork W2017205855 @default.
- W2024013455 hasRelatedWork W2048505601 @default.
- W2024013455 hasRelatedWork W2116675934 @default.
- W2024013455 hasRelatedWork W2167293474 @default.
- W2024013455 hasRelatedWork W2331674254 @default.
- W2024013455 hasRelatedWork W2544359817 @default.
- W2024013455 hasRelatedWork W2979079341 @default.
- W2024013455 hasRelatedWork W3042897387 @default.
- W2024013455 hasRelatedWork W4310007291 @default.
- W2024013455 isParatext "false" @default.
- W2024013455 isRetracted "false" @default.
- W2024013455 magId "2024013455" @default.
- W2024013455 workType "article" @default.