Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024014345> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2024014345 endingPage "634" @default.
- W2024014345 startingPage "606" @default.
- W2024014345 abstract "In this article we study generalized Nash equilibrium problems (GNEP) and bilevel optimization side by side. This perspective comes from the crucial fact that both problems heavily depend on parametric issues. Observing the intrinsic complexity of GNEP and bilevel optimization, we emphasize that it originates from unavoidable degeneracies occurring in parametric optimization. Under intrinsic complexity, we understand the involved geometrical complexity of Nash equilibria and bilevel feasible sets, such as the appearance of kinks and boundary points, non-closedness, discontinuity and bifurcation effects. The main goal is to illustrate the complexity of those problems originating from parametric optimization and singularity theory. By taking the study of singularities in parametric optimization into account, the structural analysis of Nash equilibria and bilevel feasible sets is performed. For GNEPs, the number of players’ common constraints becomes crucial. In fact, for GNEPs without common constraints and for classical NEPs we show that—generically—all Nash equilibria are jointly nondegenerate Karush–Kuhn–Tucker points. Consequently, they are isolated. However, in presence of common constraints Nash equilibria will constitute a higher dimensional set. In bilevel optimization, we describe the global structure of the bilevel feasible set in case of a one-dimensional leader’s variable. We point out that the typical discontinuities of the leader’s objective function will be caused by follower’s singularities. The latter phenomenon occurs independently of the viewpoint of the optimistic or pessimistic approach. In case of higher dimensions, optimistic and pessimistic approaches are discussed with respect to possible bifurcation of the follower’s solutions." @default.
- W2024014345 created "2016-06-24" @default.
- W2024014345 creator A5035961103 @default.
- W2024014345 creator A5050444117 @default.
- W2024014345 creator A5091650389 @default.
- W2024014345 date "2012-10-26" @default.
- W2024014345 modified "2023-09-23" @default.
- W2024014345 title "On Intrinsic Complexity of Nash Equilibrium Problems and Bilevel Optimization" @default.
- W2024014345 cites W1604627832 @default.
- W2024014345 cites W1607072065 @default.
- W2024014345 cites W1974464163 @default.
- W2024014345 cites W1977794212 @default.
- W2024014345 cites W2001317839 @default.
- W2024014345 cites W2003083760 @default.
- W2024014345 cites W2037678919 @default.
- W2024014345 cites W2037904604 @default.
- W2024014345 cites W2052688020 @default.
- W2024014345 cites W2092114545 @default.
- W2024014345 cites W2163670191 @default.
- W2024014345 cites W2170269759 @default.
- W2024014345 cites W2481910659 @default.
- W2024014345 cites W4231147659 @default.
- W2024014345 cites W4235840289 @default.
- W2024014345 cites W4236123449 @default.
- W2024014345 doi "https://doi.org/10.1007/s10957-012-0210-7" @default.
- W2024014345 hasPublicationYear "2012" @default.
- W2024014345 type Work @default.
- W2024014345 sameAs 2024014345 @default.
- W2024014345 citedByCount "13" @default.
- W2024014345 countsByYear W20240143452014 @default.
- W2024014345 countsByYear W20240143452015 @default.
- W2024014345 countsByYear W20240143452017 @default.
- W2024014345 countsByYear W20240143452020 @default.
- W2024014345 countsByYear W20240143452021 @default.
- W2024014345 countsByYear W20240143452022 @default.
- W2024014345 crossrefType "journal-article" @default.
- W2024014345 hasAuthorship W2024014345A5035961103 @default.
- W2024014345 hasAuthorship W2024014345A5050444117 @default.
- W2024014345 hasAuthorship W2024014345A5091650389 @default.
- W2024014345 hasConcept C105795698 @default.
- W2024014345 hasConcept C117251300 @default.
- W2024014345 hasConcept C126255220 @default.
- W2024014345 hasConcept C134306372 @default.
- W2024014345 hasConcept C137836250 @default.
- W2024014345 hasConcept C144237770 @default.
- W2024014345 hasConcept C15627037 @default.
- W2024014345 hasConcept C28826006 @default.
- W2024014345 hasConcept C3309286 @default.
- W2024014345 hasConcept C33923547 @default.
- W2024014345 hasConcept C46814582 @default.
- W2024014345 hasConceptScore W2024014345C105795698 @default.
- W2024014345 hasConceptScore W2024014345C117251300 @default.
- W2024014345 hasConceptScore W2024014345C126255220 @default.
- W2024014345 hasConceptScore W2024014345C134306372 @default.
- W2024014345 hasConceptScore W2024014345C137836250 @default.
- W2024014345 hasConceptScore W2024014345C144237770 @default.
- W2024014345 hasConceptScore W2024014345C15627037 @default.
- W2024014345 hasConceptScore W2024014345C28826006 @default.
- W2024014345 hasConceptScore W2024014345C3309286 @default.
- W2024014345 hasConceptScore W2024014345C33923547 @default.
- W2024014345 hasConceptScore W2024014345C46814582 @default.
- W2024014345 hasIssue "3" @default.
- W2024014345 hasLocation W20240143451 @default.
- W2024014345 hasLocation W20240143452 @default.
- W2024014345 hasOpenAccess W2024014345 @default.
- W2024014345 hasPrimaryLocation W20240143451 @default.
- W2024014345 hasRelatedWork W1481141624 @default.
- W2024014345 hasRelatedWork W1495503294 @default.
- W2024014345 hasRelatedWork W1994436307 @default.
- W2024014345 hasRelatedWork W2087693625 @default.
- W2024014345 hasRelatedWork W2340378315 @default.
- W2024014345 hasRelatedWork W2795565301 @default.
- W2024014345 hasRelatedWork W2890257643 @default.
- W2024014345 hasRelatedWork W2896140431 @default.
- W2024014345 hasRelatedWork W3044651776 @default.
- W2024014345 hasRelatedWork W3166898200 @default.
- W2024014345 hasVolume "159" @default.
- W2024014345 isParatext "false" @default.
- W2024014345 isRetracted "false" @default.
- W2024014345 magId "2024014345" @default.
- W2024014345 workType "article" @default.