Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024048345> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2024048345 endingPage "813" @default.
- W2024048345 startingPage "801" @default.
- W2024048345 abstract "The aim in this article is to provide a means to undertake Bayesian inference for mixture models when the likelihood function is raised to a power between 0 and 1. The main purpose for doing this is to guarantee a strongly consistent model and hence, make it possible to compare the consistent posterior with the correct posterior, looking for signs of discrepancy. This will be explained in detail in the article. Another purpose would be for simulated annealing algorithms. In particular, for the widely used mixture of Dirichlet process model, it is far from obvious how to undertake inference via Markov chain Monte Carlo methods when the likelihood is raised to a power other than 1. In this article, we demonstrate how posterior sampling can be carried out when using a power likelihood. Matlab code to implement the algorithm is available as supplementary material." @default.
- W2024048345 created "2016-06-24" @default.
- W2024048345 creator A5037434634 @default.
- W2024048345 creator A5072984243 @default.
- W2024048345 date "2013-10-01" @default.
- W2024048345 modified "2023-10-17" @default.
- W2024048345 title "Bayesian Nonparametric Inference for the Power Likelihood" @default.
- W2024048345 cites W1524622012 @default.
- W2024048345 cites W1548584376 @default.
- W2024048345 cites W1998281631 @default.
- W2024048345 cites W2020946357 @default.
- W2024048345 cites W2047554048 @default.
- W2024048345 cites W2065392216 @default.
- W2024048345 cites W2069429561 @default.
- W2024048345 cites W2070557423 @default.
- W2024048345 cites W2072169887 @default.
- W2024048345 cites W2101998432 @default.
- W2024048345 cites W2106706098 @default.
- W2024048345 cites W2118942461 @default.
- W2024048345 cites W2128981260 @default.
- W2024048345 cites W2158128575 @default.
- W2024048345 cites W4308951891 @default.
- W2024048345 doi "https://doi.org/10.1080/10618600.2012.728511" @default.
- W2024048345 hasPublicationYear "2013" @default.
- W2024048345 type Work @default.
- W2024048345 sameAs 2024048345 @default.
- W2024048345 citedByCount "10" @default.
- W2024048345 countsByYear W20240483452012 @default.
- W2024048345 countsByYear W20240483452015 @default.
- W2024048345 countsByYear W20240483452016 @default.
- W2024048345 countsByYear W20240483452017 @default.
- W2024048345 countsByYear W20240483452018 @default.
- W2024048345 countsByYear W20240483452019 @default.
- W2024048345 crossrefType "journal-article" @default.
- W2024048345 hasAuthorship W2024048345A5037434634 @default.
- W2024048345 hasAuthorship W2024048345A5072984243 @default.
- W2024048345 hasConcept C107673813 @default.
- W2024048345 hasConcept C111350023 @default.
- W2024048345 hasConcept C11413529 @default.
- W2024048345 hasConcept C134306372 @default.
- W2024048345 hasConcept C154945302 @default.
- W2024048345 hasConcept C158424031 @default.
- W2024048345 hasConcept C160234255 @default.
- W2024048345 hasConcept C167928553 @default.
- W2024048345 hasConcept C169214877 @default.
- W2024048345 hasConcept C182310444 @default.
- W2024048345 hasConcept C2776214188 @default.
- W2024048345 hasConcept C2781280628 @default.
- W2024048345 hasConcept C33923547 @default.
- W2024048345 hasConcept C41008148 @default.
- W2024048345 hasConcept C89106044 @default.
- W2024048345 hasConceptScore W2024048345C107673813 @default.
- W2024048345 hasConceptScore W2024048345C111350023 @default.
- W2024048345 hasConceptScore W2024048345C11413529 @default.
- W2024048345 hasConceptScore W2024048345C134306372 @default.
- W2024048345 hasConceptScore W2024048345C154945302 @default.
- W2024048345 hasConceptScore W2024048345C158424031 @default.
- W2024048345 hasConceptScore W2024048345C160234255 @default.
- W2024048345 hasConceptScore W2024048345C167928553 @default.
- W2024048345 hasConceptScore W2024048345C169214877 @default.
- W2024048345 hasConceptScore W2024048345C182310444 @default.
- W2024048345 hasConceptScore W2024048345C2776214188 @default.
- W2024048345 hasConceptScore W2024048345C2781280628 @default.
- W2024048345 hasConceptScore W2024048345C33923547 @default.
- W2024048345 hasConceptScore W2024048345C41008148 @default.
- W2024048345 hasConceptScore W2024048345C89106044 @default.
- W2024048345 hasIssue "4" @default.
- W2024048345 hasLocation W20240483451 @default.
- W2024048345 hasOpenAccess W2024048345 @default.
- W2024048345 hasPrimaryLocation W20240483451 @default.
- W2024048345 hasRelatedWork W1480633635 @default.
- W2024048345 hasRelatedWork W1546666705 @default.
- W2024048345 hasRelatedWork W1602838358 @default.
- W2024048345 hasRelatedWork W2146501959 @default.
- W2024048345 hasRelatedWork W2172000475 @default.
- W2024048345 hasRelatedWork W2350634938 @default.
- W2024048345 hasRelatedWork W2498662104 @default.
- W2024048345 hasRelatedWork W251290377 @default.
- W2024048345 hasRelatedWork W2759531598 @default.
- W2024048345 hasRelatedWork W4300821755 @default.
- W2024048345 hasVolume "22" @default.
- W2024048345 isParatext "false" @default.
- W2024048345 isRetracted "false" @default.
- W2024048345 magId "2024048345" @default.
- W2024048345 workType "article" @default.